총 163개
-
자기 자신의 이미지를 시각, 청각, 동작 이미지로 분석하고, 직장 매너에 대해 사례를 들어 자세히 설명하시오2025.01.251. 시각 이미지 분석 시각 이미지는 외모와 옷차림, 표정 등을 포함한다. 외모는 첫인상을 결정짓는 중요한 요소이며, 깨끗하고 단정한 외모는 신뢰감을 준다. 옷차림은 상황에 맞는 적절한 복장이 필요하며, 이는 전문성을 나타낸다. 표정은 상대방에게 감정을 전달하는 중요한 수단으로, 밝고 긍정적인 표정은 호감을 준다. 시각 이미지를 잘 관리하는 것은 직장에서의 신뢰를 형성하는 데 중요한 역할을 한다. 2. 청각 이미지 분석 청각 이미지는 목소리 톤, 말투, 언어 사용 등을 포함한다. 목소리 톤은 상대방에게 안정감이나 불안감을 줄 수 있...2025.01.25
-
인공지능의 개념, 기술 및 활용사례2025.11.141. 인공지능의 개념 및 정의 인공지능은 기계가 인간의 지능적인 능력을 모방하거나 초월하여 수행하는 기술이다. 컴퓨터 시스템의 지능적인 작동 원리를 연구하고 구현하는 분야로, 기계학습, 자연어 처리, 컴퓨터 비전 등의 기술을 활용한다. 인공지능은 지식 기반과 데이터 기반으로 나뉘며, 머신 러닝, 딥 러닝, 자연어 처리 등의 기술이 사용된다. 2. 인공지능의 현재 활용사례 인공지능은 의료, 금융, 제조, 교육 등 다양한 산업분야에서 이미 활용되고 있다. 자율주행 자동차, 음성인식 기술, 의료 진단 등에서 큰 발전을 이루고 있으며, 기...2025.11.14
-
R-CNN 영상 이미지 인식을 이용한 차량간 거리 추정2025.05.091. R-CNN 딥러닝 기법 R-CNN은 object detection 분야에서 널리 사용되는 기법으로, 이미지 내 물체를 인식하고 분류하는 과정을 거치는 방식이다. R-CNN, Fast R-CNN, Faster R-CNN 등이 대표적인 R-CNN 기법이다. R-CNN은 region proposal, CNN 입력, SVM 분류, 바운딩 박스 보정 등의 단계를 거치며, Fast R-CNN과 Faster R-CNN은 이러한 단계를 개선하여 성능을 향상시켰다. 2. 차량 간 거리 추정 본 과제에서는 R-CNN을 이용하여 영상 이미지에서 ...2025.05.09
-
비즈니스 애널리틱스란 데이터 과학 데이터 애널리틱스 데이터 분석 인공지능 머신러닝 딥러닝이 무엇인지 설명하시오2025.01.261. 비즈니스 애널리틱스 비즈니스 애널리틱스는 빅데이터를 활용함에 있어서 비즈니스의 혁신을 추구하는 개념이다. 현재 미국에서는 기존 애널리틱스 기법에 빅데이터 기술을 접목시켜 정확한 정보를 제공함에 있어서 신속한 의사결정을 가능하게 하는 애널리틱스가 확산되고 있는 상황이다. 비즈니스 애널리틱스는 전세계적으로 가장 빠르게 성장하는 첨단 정보기술이며, 기업은 데이터를 기반으로 전략을 수립하고 예측 분석을 통한 미래의 트렌드를 예측하면서 실시간 데이터 분석을 통해 즉각적인 결정을 내릴 수 있어야 한다. 2. 데이터 과학 데이터 과학은 빅...2025.01.26
-
인공지능의 역사적 발전과 현재 동향2025.05.161. 인공지능 연구의 역사 인공지능 기술의 역사적 발전 과정을 살펴보며 현대에 이르기까지의 중요한 이정표와 혁신적인 발견들을 중점적으로 다룹니다. 앨런 튜링의 '컴퓨터와 지능' 논문에서 제시된 튜링 테스트는 인공지능 연구의 초기 방향을 제시했으며, 1950년대와 1960년대에는 인공지능의 기초적인 개념과 알고리즘이 개발되었습니다. 1980년대에는 신경망과 딥러닝 같은 현대 인공지능 기술의 기반이 형성되었고, 최근에는 인공지능 기술이 빠르게 발전하며 다양한 분야에서 혁신적인 변화를 가져오고 있습니다. 2. 인공지능 관련 연구 동향 딥...2025.05.16
-
글로벌비즈니스애널리틱스1공통 비즈니스 애널리틱스란 데이터 과학 데이터 애널리틱스 데이터 분석 인공지능 머신러닝 딥러닝이 무엇인지 설명하시오2025.01.261. 비즈니스 애널리틱스 비즈니스 애널리틱스(Business Analytics)는 데이터를 기반으로 비즈니스 의사 결정을 지원하는 과정입니다. 기업의 경영활동의 효율성을 제고하기 위해 지원되는 비즈니스 도구로서, 과거 뿐만 아니라 현재 실시간으로 발생하는 데이터에 대하여 연속적이고 반복적인 분석을 통해 미래를 예측하는 통찰력을 제공하는데 활용 됩니다. 주로 데이터를 수집하고 분석하여 중요한 통찰력을 도출하고, 이를 통해 비즈니스 성과를 향상시키는 데 중점을 둡니다. 2. 데이터 과학 데이터 과학(data science)이란, 데이터...2025.01.26
-
A+ 받은 컴퓨터식 사고와 상담 심리학 _기말과제_ 챗봇상담 경험 보고서_워봇2025.04.281. 심층기계학습(딥러닝) 심층기계학습(딥러닝)은 일반적인 기계 학습 모델보다 더 깊은 신경망 계층 구조를 이용하는 기계 학습 기술이다. 주로 여러 개의 은닉층(hidden layer)으로 구성된 인공 신경망을 활용하며, 이는 인간 뇌의 신경 회로망을 모사한 것이다. 심층 기계 학습은 문제를 해결하기 위해 스스로 필요한 특징을 찾아 적절하게 표현하는 학습 능력이 뛰어나 사진에서 개체 인식, 기계 번역, 바둑 등의 분야에서 뛰어난 성능을 보인다. 2. 텍스트 생성 딥러닝 알고리즘 워봇 챗봇은 구글과 오픈AI의 텍스트 생성 딥러닝 알고...2025.04.28
-
경영정보시스템_인공지능의 개념과 기술 그리고 활용사례에 대해 조사하시오.2025.01.241. 인공지능의 개념 인공지능은 단순히 기술의 발전을 넘어 인간의 인지적 능력을 모방하거나 대체하는 기술로 정의되며, 이는 정보 처리, 문제 해결, 학습 능력 등 인간 고유의 지능적 특성을 포함한다. 약한 인공지능은 특정한 작업이나 문제를 해결하기 위해 설계된 시스템이며, 강한 인공지능은 인간과 유사한 수준의 전반적인 지능을 갖춘 시스템을 의미한다. 2. 인공지능 기술 인공지능 기술의 발전은 기계학습과 딥러닝을 중심으로 이루어졌다. 기계학습은 데이터를 이용해 스스로 학습하는 알고리즘을 개발하는 기술이며, 딥러닝은 인공신경망을 기반으...2025.01.24
-
IT와경영정보시스템1공통 인공지능AI 학습고안된 LLM Large Language Model 대규모언어모형과 LMMLarge Multimodal Mode 대규모멀티모달모형 비교하시오002025.01.261. LLM (Large Language Model; 대규모 언어 모형) LLM은 주로 텍스트 데이터를 기반으로 학습된 모델로, 자연어 처리(NLP) 작업에 초점을 맞춥니다. 이러한 모델은 대량의 텍스트 데이터를 통해 언어의 구조, 의미 및 맥락을 이해하고 생성하는 능력을 가지고 있습니다. 예시로는 GPT(Generative Pre-trained Transformer), BERT(Bidirectional Encoder Representations from Transformers) 등이 있습니다. 2. LMM (Large Multim...2025.01.26
-
A+인공지능의 개념과 기술 그리고 활용사례에 대해 조사하시오2025.05.151. 인공지능의 개념 인공지능은 일반적으로 인간의 지능이 필요한 과제를 수행할 수 있는 컴퓨터 시스템의 이론과 개발을 의미합니다. 인공지능 기술에는 시각 인식, 음성 인식, 의사 결정과 언어 간 응용 또는 번역 능력 등이 포함됩니다. 2. 인공지능의 분류 인공지능은 크게 강한 인공지능과 약한 인공지능으로 구분됩니다. 강한 인공지능은 인간처럼 자유롭게 생각하고 감정을 표현할 수 있는 인공지능을 의미하며, 약한 인공지능은 자기의식이 없는 기계학습 기술이 만들어내는 전문가 시스템을 의미합니다. 3. 기계학습 기계학습은 컴퓨터 프로그램이 ...2025.05.15
