총 59개
-
MMA 벌크 중합 실험 예비보고서2025.11.111. 벌크 중합(Bulk Polymerization) 벌크 중합은 단량체만을 사용하여 중합 반응을 진행하는 방법입니다. MMA(메틸메타크릴레이트)의 벌크 중합에서는 용매나 다른 첨가제 없이 순수한 단량체 상태에서 개시제를 통해 라디칼 중합 반응을 시작합니다. 이 방법은 높은 중합도의 고분자를 얻을 수 있으며, 순도가 높은 제품을 생산할 수 있다는 장점이 있습니다. 2. MMA(메틸메타크릴레이트) 메틸메타크릴레이트는 아크릴 수지의 주요 단량체로, 투명성과 경도가 우수한 고분자인 PMMA(폴리메틸메타크릴레이트)를 합성하는 데 사용됩니다...2025.11.11
-
PMMA 중합 및 분자량 분석 실험2025.11.181. 라디칼 중합(Radical Polymerization) 고분자 합성의 한 방법으로 반응성 높은 자유 라디칼이 단량체와 반응하며 전이되는 과정이 반복되어 고분자를 형성한다. 개시반응에서 개시제가 끊어져 라디칼을 생성하고, 성장반응에서 라디칼이 단량체를 만나 반응하며 사슬의 길이를 증가시킨다. 정지반응으로 고분자 사슬의 성장이 멈추며, 연쇄이동반응으로 고분자 사슬 중간에 곁가지가 생성될 수 있다. 2. 겔 투과 크로마토그래피(GPC) 긴 컬럼 안으로 고분자용액을 투과시켜 고분자가 크기에 따라 분리되는 분석법이다. 분자량이 큰 물질...2025.11.18
-
스타이렌의 유화 중합 A+ 결과보고서2025.04.281. 유화 중합 유화 중합은 부가중합에 의하여 중합될 수 있는 고분자의 생산에 사용되는 중합 방법이다. 유화 중합반응계는 monomer와 분산매 및 계면활성제와 분산매에 용해되는 개시제로 이루어진다. 유화 중합은 분산매에 의하여 반응액의 유동성이 좋은 상태로 유지되므로 반응열의 제거가 용이하고 높은 분자량을 가지는 고분자를 중합 속도가 높게 유지되는 상태에서 생산할 수 있다. 2. 유화 중합의 특징 유화 중합을 다른 중합법과 비교하면 반응온도의 조절이 용이하고, 중합속도와 분자량을 동시에 증대시킬 수 있으며, 중합도가 큰 것 또는 ...2025.04.28
-
Styrene 라디칼중합을 이용한 Polystyrene 제조2025.11.131. 현탁중합(Suspension Polymerization) 현탁중합은 물과 같은 비상용성 액체에 단량체를 기계적으로 분산시키고, 단량체에 용해하는 개시제를 사용하여 단량체 유적을 중합시키는 기술이다. 단량체는 연속교반과 poly(vinyl alcohol)이나 methyl cellulose와 같은 안정제에 의하여 현탁 상태로 유지되며, 공정을 조심스럽게 조절하면 중합체는 구형의 형태로 얻어진다. 2. 라디칼중합(Radical Polymerization) 라디칼중합은 개시제에 의해 생성된 라디칼이 단량체의 이중결합을 공격하여 중합을...2025.11.13
-
스타이렌(styrene)의 용액중합2025.01.271. 용액중합 용액중합(solution polymerization)은 용매중에서 모노머를 중합시키는 방법으로, 사용되는 용매가 모노머와 생성된 고분자를 모두 용해시키면 균일계 용액중합(homogeneous solution polymerization)이라 하고, 모노머만 용해시키는 경우를 불균일계 용액중합(heterogeneous solution polymerization)이라 한다. 용액중합은 발열반응에 의한 반응열을 제거할 수 있고, 사용되는 용매만 잘 선택하면 중합도를 조절할 수 있는 장점이 있다. 2. 스타이렌 스타이렌은 매우...2025.01.27
-
스타이렌(styrene)의 분산중합 [고분자화학실험 A+]2025.05.061. 분산 중합 분산 중합(dispersion polymerization)은 불균일계 중합의 한 종류로, 모노머, 개시제, 안정제는 용매에 녹일 수 있지만 중합된 고분자는 용매에 용해되지 않아 석출되는 원리를 이용한 것이다. 용매에 단량체, 개시제, 안정제를 용해시킨 후 온도를 높여 고분자를 성장시키면, 일정 사슬이 길어져 올리고머 상태가 되면 석출된다. 이때 올리고머들이 뭉쳐져서 입자를 형성하는 핵을 만들고, 핵의 성장을 통해 nano 또는 micro 사이즈의 입자를 만든다. 이 과정에서 핵의 입자에 안정제가 흡착되어 응집을 방지...2025.05.06
-
PVAc 중합 실험2025.05.141. 단계중합과 연쇄중합 단계중합은 고분자 합성 시 초기에 단위체 분자가 반응하여 없어지고 분자량이 단계적으로 높아지는 중합 반응이다. 연쇄중합은 연쇄반응 메커니즘에 의해 진행하는 중합으로, 각 반응마다 생성물의 중합도가 증가하고 말단기가 연쇄 전달체의 역할을 한다. 2. 라디칼 중합 라디칼 중합은 생장 중합체의 말단에 있는 원자가 유리전자 1개를 갖는 자유라디칼 상태에서 진행되는 중합반응이다. 라디칼과 라디칼이 반응하여 재결합 또는 불균화가 일어나며, 라디칼의 분해반응도 있다. 3. poly(vinyl acetate) poly(v...2025.05.14
-
유화중합에 의한 폴리스타이렌의 중합 실험 결과보고서2025.01.131. 유화중합 유화중합은 현탁중합과 같이 물을 사용하지만 중합개시제가 단량체에 용해되지 않고 물에 녹아 있으며, 현탁제 대신 마이셀을 형설할 수 있는 유화제가 사용된다. 유화중합에서는 중합이 일어나는 장소가 단량체 분산상이 아니라 물상에서 생성된 라디칼과 물로 확산되어 나오는 단량체가 만나는 장소가 되는 마이셀 내부이므로 현탁중합과는 반응기구가 달라진다. 2. 폴리스타이렌 합성 스타이렌을 이용하여 폴리스타이렌을 중합하기 전 스타이렌 단량체에 포함되어있는 반응 금지제를 제거해주어야한다. 이를 위해 약산성 물질인 10% NaOH 수용액...2025.01.13
-
비닐 단량체 및 라디칼 개시제의 정제2025.01.171. 단량체 정제 모든 중합 반응에서 단량체의 순도는 매우 중요하며, 특히 불순물이 중합 금지제이거나 정지반응을 일으키는 물질인 경우 그 농도가 ppm 단위라도 중합 속도 및 분자량에 큰 영향을 미칠 수 있다. 단량체 정제 방법에는 단순 증류, 분별 증류, 공비 증류, 진공 증류, 재결정, 추출, 승화 및 크로마토그래피 등이 있다. 2. 중합 금지제 중합 금지제는 라디칼과 반응하여 중합 반응을 일으킬 수 없는 낮은 반응성의 라디칼이나 화합물을 생성하는 물질이다. 대표적인 중합 금지제로 hindered phenol이 있으며, 중합으로...2025.01.17
-
PMMA(Poly methyl methacrylate) 벌크중합 예비 및 결과 레포트2025.01.181. PMMA의 역사와 특징 PMMA(폴리메틸메타크릴레이트)는 1930년대에 연구 개발되어 공업화가 시작되었다. PMMA는 무색으로 가시광선의 전파 장을 흡수하지 않고 자외선도 270nm까지 투과한다. 또한 착색성이 매우 좋아서, 흐린 색으로부터 짙은 색까지 광범위한 색조를 얻을 수 있다. 열 또는 일광에서도 변색 또는 퇴색되지 않는 특성이 있으며, 표면 광택성이 있고 강인하며 가벼운 것이 특징이다. 2. PMMA의 제법 PMMA는 MMA의 중합으로 만들 수 있으며, bulk중합, suspension중합, solution중합, em...2025.01.18
