
총 29개
-
고등학교 확률과 통계 과목별 세부능력 및 특기 사항(과세특) 예시2025.01.221. 표준정규분포 표준정규분포 그래프를 그리고 이를 이용하여 구하고자 하는 확률을 구할 수 있고, 정규분포와 표준정규분포의 공통점과 차이점을 설명할 수 있음. 2. 이항분포 실생활에서 이항분포를 따르는 상황에는 어떤 것이 있는지 이해하고 정규분포로 근사시켜 상황에 맞는 답을 도출함. 3. 확률과 통계의 실생활 활용 확률과 통계 기법을 통해 사용자 이동 패턴을 분석하고 최적의 경로를 설계하였고, 스마트홈 및 리모델링 사례를 통해 적용 가능성을 보여줌. 이항분포가 마케팅, 예약 및 고객 행동 예측에 활용되는 방법을 소개함. 베이즈 정리...2025.01.22
-
기초 확률과 통계2025.01.131. 확률 확률의 기본 개념과 용어를 설명하고 있습니다. 시행, 표본공간, 사건 등의 개념을 정의하고 있으며, 확률의 계산 방법과 확률의 기본 정리들을 다루고 있습니다. 또한 조건부 확률, 독립성 등의 개념도 설명하고 있습니다. 2. 통계 통계의 기본 개념과 용어를 설명하고 있습니다. 도수분포표, 히스토그램, 평균, 분산, 표준편차 등의 개념을 정의하고 있습니다. 또한 확률변수, 이산확률분포, 연속확률분포, 정규분포 등의 개념도 다루고 있습니다. 표본과 모집단의 관계, 표본분포 등도 설명하고 있습니다. 3. 이산확률분포 이산확률분포...2025.01.13
-
파스칼의 삼각형에 숨겨진 조합과 집합 탐구2025.01.021. 파스칼의 삼각형 파스칼의 삼각형은 수학에서 이항계수를 삼각형 모양의 기하학적 형태로 배열한 것입니다. 파스칼의 삼각형에서는 (a+b)^n의 전개식에서 n의 자리에 차례대로 1,2,3,4... 를 대입했을 때 나오는 이항계수를 삼각형 모양으로 정리한 모습이 나타납니다. 또한 파스칼의 삼각형에서는 조합을 이용해서 살펴볼 수 있으며, 부분집합의 개수와 관련된 식을 얻을 수 있습니다. 2. 조합 파스칼의 삼각형에서는 조합을 이용해서 살펴볼 수 있습니다. 예를 들어 1번째 줄은 1을 {0C0}으로 나타낼 수 있고, 2번째 줄은 각각 {...2025.01.02
-
확률이론에 대하여 요약하여 정리하시오2025.01.181. 확률의 공준 및 확률분포 확률의 공준은 고전적 개념에 속하기 때문에 주관적 개념을 통해 확률을 부여하면 문제가 발생한다. 때문에, 확률을 정의하는 대신 세가지 조건을 만족하면 이를 곧 확률로 한다는 것이 '확률의 공준'이다. 확률분포란 실험이나 관찰에서 시행 가능한 사상으로 구성된 표본공간의 확률 변수를 확률 값으로 이어주는 함수이다. 2. 확률법칙에 대한 정리 덧셈법칙은 여러 개의 사상 중 적어도 하나의 사상이 발생할 확률을 뜻한다. 여확률의 법칙에서 여확률이란 사상 A의 여사건이라고 한다면 사상 A가 일어나지 않은 확률이라...2025.01.18
-
고등학교 수학 평가기준안 - 심화수학22025.01.141. 부정적분 여러 가지 함수의 부정적분을 구할 수 있고, 치환적분법과 부분적분법을 이해하고 활용할 수 있다. 2. 정적분 구분구적법과 정적분의 뜻을 이해하고, 곡선으로 둘러싸인 도형의 넓이, 입체도형의 부피, 속도와 거리에 관한 문제, 평면상의 곡선의 길이를 구할 수 있다. 3. 이차곡선 포물선, 타원, 쌍곡선의 방정식을 구할 수 있고, 이차곡선과 직선의 위치 관계를 이해하여 접선의 방정식을 구할 수 있다. 4. 공간도형과 공간좌표 직선과 직선, 직선과 평면, 평면과 평면의 위치 관계에 대한 간단한 증명을 할 수 있고, 삼수선의 ...2025.01.14
-
확률이론에 대하여 요약하여 정리하시오2025.04.271. 확률의 공준 확률의 공준은 총 3가지로 정리할 수 있다. 공준1: 0<=P(E)<=1 (모든 확률의 값은 0이상 1이하), 공준2: P(S) = 1 (모든 확률의 합은 1), 공준3: 각 사건이 배반사건일 경우 합사건의 확률은 각각의 확률을 합한 것과 같음. 2. 확률분포 확률분포란 확률변수를 X라 하였을 때 X의 함수이다. 이 X는 특정한 값을 가지는데 그 값을 가질 확률들은 일종의 함수와 같이 특정 분포를 가지게 된다. 예를 들면 주사위를 던지는 실험에서 나올 수 있는 확률변수가 X이고, X의 확률은, P(x=1)=1/6이...2025.04.27
-
[경영통계학] 이산확률분포에 대하여 요약 정리하시오.2025.01.241. 이산확률분포의 개념 이산확률분포(discrete probability distribution)는 확률변수가 연속적이지 않고 개별적인 값을 취할 때 그 값들에 할당된 확률의 분포를 의미한다. 이산형 확률변수는 1, 2, 3과 같은 정수형 값이나 '성공'과 '실패'처럼 서로 명확하게 구분되는 결과로 나타난다. 이러한 확률변수에 대해 각 값이 발생할 확률을 정리한 것이 이산확률분포다. 2. 이산확률분포의 활용 이산확률분포는 품질 관리, 금융 및 경제 분야, 의료 및 공공 정책 분야 등에서 다양하게 활용된다. 제조업에서는 이항분포를 ...2025.01.24
-
확률변수와 확률분포의 개념 설명2025.05.141. 확률변수 확률은 특정한 사건이 발생할 가능성을 0과 1로 표현한 값이다. 확률은 객관적 확률과 주관적 확률로 구분되며, 고전적 확률 관점에서는 경험적 자료가 없어도 논리적 추론과 계산으로 선험적 확률을 구할 수 있다. 주관적 확률은 간접적 자료와 수집 자료를 활용하여 표본을 정리하고 사건 발생 확률을 정의한 다음 공준을 구하는 방식을 채택한다. 2. 확률분포 확률분포는 단일변량 확률분포, 결합확률분포, 주변확률분포, 조건부확률분포로 구분할 수 있다. 이러한 확률분포는 확률 덧셈법칙, 여확률법칙, 곱셈법칙, 통계적 독립성 등의 ...2025.05.14
-
이산수학 ) 수학적 귀납법에 대하여 설명하고 교재에서 배우지 않은 예를 만들고 수학적 귀납법을 이용하여 증명2025.01.281. 수학적 귀납법 수학적 귀납법은 한 개의 도미노가 넘어지면 다른 도미노도 차례로 쓰러지고, K 번째 도미노가 쓰러지면 K+1번째 도미노가 쓰러지는 것과 같이 어떤 명제가 모든 자연수에 대해 참임을 증명하고자 할 때 사용한다. 수학적 귀납법은 과학뿐만 아니라 그래프이론, 정수론, 선형대수학, 해석학, 기하학, 확률론 등 수학의 대부분 분야에서 사용되었고, 컴퓨터과학과 알고리즘 발달 초점을 둔 오늘날의 인공지능 시대에는 더욱 필요한 논리이다. 2. 수학적 귀납법의 역사 유클리드는 자신의 저서 '원론'에서 처음으로 수학적 귀납법을 사...2025.01.28
-
수학적 귀납법에 대하여 설명하고 교재에서 배우지 않은 예를 만들고 수학적 귀납법을 이용하여 증명하라2025.01.181. 수학적 귀납법 수학적 귀납법은 주어진 모든 자연수가 특정 성질을 만족한다는 명제를 증명하는 방법 중 하나입니다. 이 방법은 가장 작은 자연수(상황에 따라 0이거나 1일 수 있다)가 해당 성질을 만족함을 먼저 증명하고, 어떤 자연수가 그 성질을 만족한다고 가정했을 때, 그 다음 자연수 또한 같은 성질을 만족함을 보임으로써 모든 자연수에 대해 그 성질이 성립함을 증명합니다. 수학적 귀납법은 일반적인 귀납적 논증이 아니라 연역적 논증에 속하며, 페아노의 공리계에서 유래한 공리로 간주됩니다. 또한 이 귀납법은 임의의 정초 관계를 가진...2025.01.18