총 81개
-
금오공과대학교 일반물리학실험 벡터의 덧셈 예비보고서+결과보고서2025.05.041. 벡터의 덧셈 이 실험은 한 점에 작용하는 여러 벡터가 평행을 이루게 하여 벡터의 합성과 분해를 공부하는 것을 목적으로 합니다. 실험에서는 두 벡터와 세 벡터의 합성을 실험하고 계산을 통해 결과를 비교하였습니다. 실험 결과와 계산 결과의 오차 원인으로는 합성대와 지지면의 수평 상태, 수준기의 오작동 등이 있었습니다. 1. 벡터의 덧셈 벡터의 덧셈은 선형대수학에서 매우 중요한 개념입니다. 벡터는 크기와 방향을 가진 수학적 객체로, 이를 더하면 새로운 벡터를 얻을 수 있습니다. 벡터의 덧셈은 물리학, 공학, 컴퓨터 과학 등 다양한 ...2025.05.04
-
금오공대 일반물리학실험1 벡터의 덧셈2025.05.071. 벡터의 덧셈 이번 실험을 통해 벡터의 덧셈을 측정하였다. 처음에는 실험값을 구하기 위해 어림잡아 추를 올렸다. 처음에는 계속 한쪽으로 치우쳐서 힘들었지만 조금씩 무게를 더하다 보니 고리가 중간에서 평형을 이룰 수 있었다. 오차의 원인으로는 합성대를 책상에 올리고 실험을 진행해서 완전히 평행한지 확인하지 못한 것과 실이 정확히 몇 도에 위치에 있는지 확인하기 어려웠던 것이 원인이라고 생각한다. 또한, 추의 가장 작은 무게가 1g이기 때문에 세밀하게 측정하기 어려웠던 점, 도르레와 실의 마찰력을 고려하지 못한 점도 오차의 원인으로...2025.05.07
-
화학공학을 위한 머신러닝과 딥러닝 기본이론2025.11.181. 지도학습 알고리즘 나이브 베이즈 분류, 선형판별분석, K-최근접 이웃, 서포트 벡터 머신, 랜덤 포레스트, 그레디언트 부스트, 신경망 등의 지도학습 알고리즘들을 다룬다. 이들은 정답이 있는 데이터를 활용하여 분류와 회귀 문제를 해결하는 기계학습 기법이다. 각 알고리즘은 서로 다른 수학적 원리와 최적화 방법을 기반으로 하며, 화학안전 분야에 적용하기 위해서는 선형대수학, 미분적분학 등의 기초 수학 이해가 필수적이다. 2. 비지도학습 및 군집화 K-평균 군집화, 계층적 군집화, 밀도 기반 클러스터링(DBSCAN) 등의 비지도학습 ...2025.11.18
-
매트랩 시험2 (답지 포함)2025.01.241. 매트랩 프로그래밍 매트랩은 수치 계산, 시뮬레이션, 데이터 분석 등 다양한 분야에서 널리 사용되는 강력한 프로그래밍 언어입니다. 이 프레젠테이션에서는 매트랩을 사용하여 행렬 연산, 배열 조작, 비선형 회귀 분석 등의 기능을 구현하는 방법을 다루고 있습니다. 이를 통해 매트랩의 기본적인 사용법과 응용 기술을 익힐 수 있습니다. 2. 행렬 연산 매트랩에서는 행렬 연산을 쉽게 수행할 수 있습니다. 이 프레젠테이션에서는 다양한 크기의 행렬을 생성하고, 덧셈, 뺄셈, 곱셈 등의 연산을 수행하는 방법을 보여줍니다. 이를 통해 선형대수학 ...2025.01.24
-
인하대학교 공업수학1 문제풀이2025.11.131. 공업수학 공업수학은 공학 분야에서 필요한 수학적 개념과 기법을 다루는 학문입니다. 미분방정식, 선형대수, 복소함수론, 푸리에 급수 등 다양한 수학적 도구를 포함하며, 실제 공학 문제 해결에 필수적인 이론과 응용 방법을 제공합니다. 2. 문제풀이 문제풀이는 이론적 개념을 실제 문제에 적용하는 과정입니다. 단계별 풀이 과정을 통해 학생들이 개념을 이해하고 유사한 문제에 적용할 수 있는 능력을 개발하도록 돕습니다. 효과적인 문제풀이는 학습 효율을 높이고 실력 향상을 촉진합니다. 3. 미분방정식 미분방정식은 함수와 그 도함수 사이의 ...2025.11.13
-
등가 전원 정리_결과레포트2024.12.311. 테브난의 정리 테브난의 정리 실험을 통해 복잡한 회로를 하나의 전원과 하나의 저항으로 구성된 등가회로로 표현할 수 있음을 확인하였다. 실험 결과, 테브난의 등가 전압과 등가 저항을 계산하고 이를 이용하여 부하 전류를 구할 수 있었다. 오차 발생 원인으로는 저항 자체의 내부 오차, 측정 시 단자 인지 오류, 주변 온도 변화, 접촉 불량 등이 있었다. 향후 실험의 정밀도를 높이기 위해서는 정밀한 저항 사용, 온도 유지, 접촉 개선 등이 필요할 것으로 보인다. 2. 노튼의 정리 노튼의 정리 실험을 통해 복잡한 회로를 하나의 전류원과...2024.12.31
-
[진로탐구활동] 수학 교사가 되는 길-수학 교사가 되려면 어떻게 해야 하는지 자세히 설명한 리포트입니다.2025.04.251. 수학 교사의 역할 수학 선생님은 학생이 현재 배우고 있는 수학을 쉽게 이해할 수 있도록 도와주는 역할을 할 뿐만 아니라 청소년기 학생들에게 가치관을 확립할 수 있도록 도와준다. 중·고등학교에서 학생들에게 수리력과 논리적 사고력을 향상하기 위하여 수학, 실용 수학, 미분과 적분, 확률과 통계, 이산수학 및 관련 과목을 전문으로 교육한다. 2. 수학 교사의 주요 업무 - 학생들의 구체적인 경험에 근거하여 사물의 현상을 수학적으로 해석하고 조직하는 활동, 직관이나 구체적인 조작 활동에 바탕을 둔 통찰 등의 수학적 경험을 통하여 수학...2025.04.25
-
라이프니츠의 수학적 업적2025.01.201. 미적분학 이론 발전 라이프니츠는 일반적인 미적분학 이론의 발전과 무한급수에 대한 연구로 가장 위대한 수학적 업적을 남겼다. 그는 접선의 기울기를 좌표계의 축에 따른 '무한히 작은' 거리의 비로 나타내고, 이를 dx, dy와 같은 기호로 표현했다. 또한 곡선 밑의 면적을 구하는 방법으로 직사각형의 합을 이용하여 근사값을 구하고, 이를 통해 적분의 개념을 발전시켰다. 그는 미분, 미분계수, 적분의 개념을 d(), dy/dx, ∫()와 같은 기호로 표기하는 방법을 개발했다. 2. 미분계수 및 적분 연산 법칙 발견 라이프니츠는 미분계...2025.01.20
-
라플라스 변환의 원리와 미분방정식 해법2025.11.161. 라플라스 변환의 정의 및 원리 라플라스 변환은 미분방정식을 대수방정식으로 변환시켜 손쉽게 풀 수 있는 변환법입니다. 미분과 적분, 초월함수의 개념이 포함된 복잡한 미분방정식을 인수분해와 근의 공식 등으로 간단히 해결할 수 있습니다. 라플라스 변환은 선형성을 띠며, 변환된 식을 역변환하여 원래 미분방정식의 해를 얻습니다. 복잡한 역변환 과정은 변환 표를 참고하여 직관적으로 수행합니다. 2. 미분방정식의 실생활 응용 미분방정식은 물리학의 운동 방정식, 열 방정식, 슈뢰딩거 방정식 등에 사용됩니다. 공학에서는 회로 이론, 제어 시스...2025.11.16
-
PCA & SVD2025.01.131. PCA (주성분 분석) PCA는 데이터의 분산(variance)을 최대한 보존하면서 서로 직교하는 새 기저(축)를 찾아, 고 차원 공간의 표본들을 선형 연관성이 없는 저차원 공간으로 변환하는 기법입니다. 데이터의 분산을 최대로하는 새로운 기저를 찾기 위해서는 데이터 행렬 A의 공분산 행렬을 구해야 합니다. 공분산 행렬의 고유분해(Eigendecomposition)를 통해 가장 큰 고유값 몇 개를 고르고, 그에 해당하는 고유벡터를 새로운 기저로 하여 데이터 벡터들을 정사영시키면 PCA 작업이 완료됩니다. 2. SVD (특이값 분...2025.01.13
