
총 246개
-
순환계통 간단 정리2025.05.041. 순환계통 순환계통은 인체의 각 부위에 혈액을 수송하는 역할을 합니다. 심장은 끊임없는 수축과 이완으로 혈액을 방출하며, 1분에 약 5리터의 혈액을 방출하고 1회 박동 시 75~80밀리리터의 혈액을 방출합니다. 심장은 근육으로 된 속이 비어있는 장기로, 무게는 250~300그램이며 정중선 상 2/3이 왼쪽으로 치우쳐 있고 가로막 위에 얹혀있습니다. 심장의 위치는 둘째 갈비연골 위쪽, 왼쪽은 셋째~다섯째 갈비연골, 오른쪽은 복장뼈의 오른편에 위치합니다. 1. 순환계통 순환계통은 우리 몸에서 매우 중요한 역할을 합니다. 혈액이 심장...2025.05.04
-
일반화학실험 화학발광 결과보고서(A+)2025.01.161. 화학발광 화학반응에 수반하여 생기는 발광으로, 1670년 브란트가 노란인[黃燐]이 공기 중 어두운 곳에서 미약하게 청록색으로 발광하는 것을 보고 밝혀냈다. 보통 열을 수반하지 않는 냉광으로 광화학 반응의 역으로 간주된다. 화학루미네선스라고도 한다. 빛의 형태로 에너지를 발산하는 화학반응을 말한다. 화학반응에 관여하는 물질이 들떠 발광하거나, 들뜬 분자 또는 들뜬 원자가 함께 존재하고 있는 다른 분자나 원자에 충돌하여 이것을 들뜨게 하여 발광 시키는 경우 등이 있다. 2. 야광봉(케미라이트)의 원리와 구조 케미칼라이트는 20여년...2025.01.16
-
빛과 광합성 레포트2025.05.031. 광합성 광합성은 녹색식물이 빛에너지를 이용하여 CO2와 물로부터 유기화합물을 생성하는 과정이며 이 과정은 녹색식물에 의해 빛에너지가 화학에너지로 전환되는 것을 의미한다. 광합성은 높은 화학 에너지를 갖는 물질을 생성함과 동시에 산소를 방출함으로써, 생태계 내에서 매우 중요한 위치를 차지한다. 광합성은 명반응과 암반응으로 구분할 수 있으며, 명반응에서는 엽록소가 빛에너지를 흡수하여 화학에너지로 전환하고 물이 분해되며 산소가 방출된다. 암반응에서는 명반응에서 형성된 화학에너지를 이용하여 대기 중의 이산화탄소와 수소를 결합시켜 최종...2025.05.03
-
식품생화학 전자전달계와 산화적 인산화2025.05.071. 전자전달계 전자전달계는 미토콘드리아 내막에 위치하며, NADH와 FADH2로부터 전자를 받아 최종적으로 산소를 환원하여 물을 생성하는 일련의 반응으로 구성되어 있다. 이 과정에서 양성자가 미토콘드리아 기질에서 막 사이 공간으로 이동하여 pH 기울기를 형성하게 되며, 이 에너지를 이용하여 ATP 합성효소가 ADP와 무기인산으로부터 ATP를 생성한다. 2. 산화적 인산화 산화적 인산화는 전자전달계에서 발생한 양성자 기울기를 이용하여 ATP 합성효소가 ADP와 무기인산으로부터 ATP를 생성하는 과정이다. 이때 ATP 합성효소의 입체...2025.05.07
-
운동에너지를 공급하는 아데노신삼인산에 대해서 조사하시오2025.04.271. ATP의 개념과 생성효율 ATP는 아데노신에 인산기 3개가 결합한 유기화합물로, 생물의 에너지 대사에 필요한 물질이다. ATP에서 가장 끝부분에 결합된 인산기는 결합을 끊고 떨어져 나갈 수 있으며, 이때 자유에너지가 방출되어 생물체가 활동할 수 있다. ATP는 미토콘드리아의 기질에서 생성되며, 특별한 수송체계를 통해 세포질로 이동한다. ATP 생성 비율은 산화적 인산화 과정, 해당과정 NADH의 전자전달계 합류 등을 통해 계산할 수 있다. 2. 인체의 에너지대사 인체를 구성하는 세포는 탄수화물, 지방, 단백질과 같은 열량영양소...2025.04.27
-
이산화탄소 소화설비의 개요와 구성 형태, 장단점2025.05.111. 이산화탄소 소화설비의 개요 이산화탄소 소화설비는 이산화탄소를 일정한 고압 또는 저압 용기에 저장해 두었다가 화재가 발생하면 수동 또는 자동으로 이산화탄소를 화점에 분사하여 소화하도록 한 고정식 또는 이동식의 설비입니다. 이 설비는 물에 의한 피해가 예상되는 장소나 유류(B급)화재, 전기(C급)화재 등에 주로 사용되며 화학적으로 안정된 소화약제이므로 약제의 변질이 없고 한번 설치하면 반영구적으로 사용이 가능합니다. 2. 이산화탄소 소화설비의 구성 형태 이산화탄소 소화설비의 주요 구성 요소는 이산화탄소 저장용기, 화재감지장치, 기...2025.05.11
-
ARDS 성인 호흡곤란 증후군, 폐렴 case study2025.01.151. ARDS 병태생리 ARDS는 기존 폐질환이 없던 환자에서 원인에 의해 활성화된 염증세포와 그들 세포에서 방출되는 물질이 폐모세혈관 내피세포를 손상시켜 발생한다. 이로 인해 모세혈관 투과성 증가, 부종, 섬유소 침착, 호흡곤란, 저산소혈증, 폐탄성 감소, 미만성 폐 침윤 등의 심각한 급성 호흡부전 상태가 발생한다. 일부 삼출성 병변은 흡수되지만 상당수가 섬유화되어 폐기능 부전을 초래한다. 2. ARDS 원인 ARDS는 60가지 이상의 다양한 원인에 의해 발생할 수 있다. 가장 흔한 원인은 패혈증과 심한 외상이며, 이로 인해 혈액...2025.01.15
-
아주대 생실1) 광합성 보고서2025.05.101. 광합성 광합성은 빛 에너지를 이용하여 이산화탄소와 물로부터 탄수화물과 산소를 생산하는 과정이다. 광합성은 식물체에서 일어나며 무기물로부터 유기물이 합성된다. 광합성은 명반응과 암반응으로 구성되며, 명반응은 빛 에너지를 화학에너지로 전환시키는 반응이고 암반응은 화학에너지를 이용하여 유기물을 합성하는 반응이다. 이번 실험에서는 빛의 조건에 따른 식물의 반응을 확인하여 광합성에서 빛의 역할을 이해하고자 하였다. 1. 광합성 광합성은 지구 생태계에 매우 중요한 역할을 하는 과정입니다. 식물은 광합성을 통해 이산화탄소를 흡수하고 산소를...2025.05.10
-
생물학실험1_식물의 호흡2025.05.011. 식물의 호흡 이 실험에서는 온도에 따른 식물의 호흡량을 이산화탄소의 생성량으로 측정하고 Q10값을 구하여 확인하였다. 식물의 호흡은 미토콘드리아에서 일어나며, 호흡량 측정은 호흡으로 방출된 이산화탄소를 NaOH와 반응시켜 산-염기 적정으로 정량하는 방법을 사용하였다. 실험 결과, 온도가 높을수록 호흡량이 증가하였으며, 4~15°C 구간의 온도계수가 15~37°C 구간보다 더 크게 나타났다. 이를 통해 온도가 식물의 호흡에 미치는 영향을 확인할 수 있었다. 1. 식물의 호흡 식물의 호흡은 매우 중요한 생리적 과정입니다. 식물은 ...2025.05.01
-
기권의 구조와 대기 복사평형2025.04.291. 대기권 대기권은 지구를 둘러싸고 있는 공기의 층으로, 대략 1,000km의 높이로 정의됩니다. 대기권 전체 공기의 약 99%는 높이 32km 이내에 분포하며, 지표면으로부터 대류권, 성층권, 중간권, 열권으로 구분됩니다. 대류권은 지표에서 약 11km까지의 층으로, 위로 올라갈수록 기온이 하강하며 대류현상과 기상현상이 활발합니다. 성층권은 대류권계면에서부터 약 50km까지의 층으로, 오존층이 존재하여 자외선을 흡수하고 기온이 상승합니다. 중간권은 성층권계면에서부터 약 80km까지의 층으로, 고도에 따른 온도 하강으로 인해 대류...2025.04.29