총 1,448개
-
A백화점 고객 대기시간 분석2025.04.271. 평균, 중앙치, 최빈치 자료의 평균, 중앙치, 최빈치를 계산하였다. 평균은 0.556분, 중앙치는 2.7분, 최빈치는 2.6분으로 나타났다. 이 중 중앙치가 가장 적절한 대푯값으로 판단되었는데, 그 이유는 평균은 극단값의 영향을 받을 수 있고, 최빈치는 자료 수가 적을 경우 전체 특성을 반영하지 못할 수 있기 때문이다. 2. 범위, 분산, 표준편차, 변동계수 자료의 범위는 2.5분, 분산은 0.464분, 표준편차는 0.681분으로 계산되었다. 이를 통해 자료의 변동성을 확인할 수 있었다. 특히 표준편차가 40초 정도로 작은 것...2025.04.27
-
A백화점 고객 대기시간 분석2025.01.051. 평균, 중앙치, 최빈치 주어진 30개의 고객 대기시간 데이터에 대해 평균, 중앙치, 최빈치를 계산하였다. 평균은 2.840분, 중앙치는 2.700분, 최빈치는 2.600분으로 나타났다. 이 중 중앙치가 가장 적절한 대표값으로 판단되는데, 그 이유는 중앙치가 전체 값의 중간에 위치하여 대표성이 높고, 최빈치와도 유사한 수준이기 때문이다. 2. 범위, 분산, 표준편차, 변동계수 주어진 데이터의 범위는 [1.800, 4.300]분이며, 분산은 0.434, 표준편차는 0.648, 변동계수는 149.207%로 계산되었다. 이를 통해 데...2025.01.05
-
경영통계학: 이산확률분포와 연속확률분포의 차이점2025.01.031. 이산확률분포 이산확률분포는 확률 변수가 이산적인 값을 가질 때 사용되며, 확률 변수의 값들에 대한 확률의 분포를 표, 방정식 또는 그래프로 나타낼 수 있습니다. 대표적인 사례로는 이항 분포, 포아송 분포, 초기하 분포 등이 있으며, 주사위를 굴렸을 때 나올 수 있는 6개의 값과 각각의 확률을 예시로 들 수 있습니다. 2. 연속확률분포 연속확률분포는 확률 변수의 값이 연속적인 값을 가지는 경우를 말하며, 그래프나 수식으로 표현할 수 있습니다. 대표적인 사례로는 균등분포, 정규분포, 지수분포, t분포, F분포, 카이제곱 등이 있습...2025.01.03
-
일상생활에서의 평균값, 중앙값, 최빈값 사례2025.01.271. 평균값의 일상적 활용 평균값은 여러 데이터의 중심 경향을 나타내는 대표적인 통계 지표로, 일상생활에서 다양한 방식으로 활용되고 있다. 가계부 작성, 학업 성취도 평가, 직장 근무 시간 분석, 건강 관리 등 다양한 분야에서 평균값이 사용되어 의사결정에 기여하고 있다. 평균값은 데이터의 전반적인 경향을 파악하는 데 유용하지만, 극단적인 값에 민감하다는 단점도 존재한다. 2. 중앙값의 적용 사례 중앙값은 데이터의 중간 값을 나타내는 통계 지표로, 극단적인 값의 영향을 최소화하여 데이터의 중심을 파악하는 데 유용하다. 가구 소득 분석...2025.01.27
-
이산확률분포와 연속확률분포의 차이점2025.01.171. 이산확률분포 이산확률분포에는 베르누이분포, 이항분포, 초기하분포, 포아송분포 등이 있습니다. 이산 확률분포는 확률변수가 셀 수 있는 유한한 값을 가지며, 각각의 값들 사이에 빈 곳이 있습니다. 주사위를 던지거나 동전을 던지는 행위가 대표적인 이산확률분포의 사례입니다. 2. 연속확률분포 연속확률분포에는 균등분포, 지수분포, 감마분포, 베타분포 등이 있습니다. 연속 확률분포는 확률변수가 무한한 값을 가질 수 있으며, 변수가 정해진 범위 안에서 모든 실수의 값을 가질 수 있습니다. 사람의 키나 물건의 무게가 대표적인 연속확률분포의 ...2025.01.17
-
기대치와 분산의 개념을 설명한 후, 사례를 제시하여 평균(기대치)와 분산을 도출하고, 이항분포의 평균2025.05.121. 평균의 의미 통계(Statistics)란 사회 현상이나 자연 현상을 관찰한 결과를 계량화하고 그 데이터를 모아 분석하며 유의미한 결론을 도출하는 행위를 의미하는 바 오늘날 거의 모든 학문에서 통계가 사용되고 있다고 보아도 과언이 아니다. 통계학에서 일상적으로 사용되는 개념 중 하나가 바로 평균과 분산인데, 먼저 평균(mean)이란 모집단의 특성을 파악하는 개념 중 하나인 대표값 –즉 자료들의 중심에 존재하는 값의 일종이다. 2. 분산의 의미 한편 분산(variation)이란, 대표값과 함께 모집단의 특성을 파악하는 개념 중 하...2025.05.12
-
[중심경향치] 중심경향의 측정2025.05.111. 평균 평균은 관측치들을 모두 합한 후에 관측치 수로 나누어 계산하는 산술평균으로서, 일상생활에서도 가장 널리 사용되는 계산방법이다. 평균은 구간측정과 비율측정 수준의 자료에만 적용될 수 있으며, 소수의 특이치의 영향을 많이 받는 문제점이 있다. 2. 중앙값 중앙값은 표본의 관측치들을 크기순으로 나열할 때 중앙에 위치한 관측치가 된다. 중앙값은 순서만을 고려하기 때문에 특이치의 크기와는 무관하게 되어, 평균에 비하여 안정적일 수 있다. 3. 최빈치 최빈치는 빈도분포에서 빈도수가 가장 많은 관측치를 의미한다. 명목측정수준의 자료에...2025.05.11
-
이산확률분포와 연속확률분포의 차이점2025.01.161. 이산확률분포 이산확률분포는 확률 이론에서 이산 확률 변수가 가지게 되는 확률의 분포를 의미하며, 변수가 가지게 되는 값의 개수가 있다는 특징이 있습니다. 이산확률분포는 확률 변수가 취할 수 있는 모든 가능한 값들과 그 값들이 발생할 확률을 나타내는 함수를 정의합니다. 대표적인 이산확률분포로는 이항분포, 포아송분포, 초기하분포 등이 있습니다. 2. 연속확률분포 연속확률분포는 연속확률변수의 가능한 값에 대한 확률을 나타내는 분포이며, 부드러운 곡선으로 표현됩니다. 연속확률분포를 특정할 때는 확률밀도함수를 사용하며, 확률을 계산하기...2025.01.16
-
방송통신대, 방통대 생물통계학 과제 제출물,2024년2025.01.261. 데이터의 대표값과 산포도 모수와 통계량, 산술평균, 표본분산의 정의식과 계산식, 표준편차와 표준오차, 유의숫자, 변이계수 등 데이터의 대표값과 산포도에 대해 설명하고 있습니다. 2. 통계적 가설의 검정 통계적 가설 검증, 귀무가설과 대립가설, 가설검정 절차, 가설검정 결과 해석 등 통계적 가설 검정에 대해 설명하고 있습니다. 3. 분산분석표의 이해 선형모형식, 일원분류(완전확률화 계획법)의 분산분석표, 유의성 검정(F-검정), 자유도 및 제곱합의 상가성, 실험계획 등 분산분석표에 대해 설명하고 있습니다. 4. 과제 풀이 주어진...2025.01.26
-
방송통신대학교 통계데이터학과)바이오통계학 중간과제물 (30점 만점 A+)2025.01.261. 모집단, 표본, 모수, 통계량 모집단은 우리가 알고 싶은 대상 전체를 의미하며, 표본은 모집단의 일부를 실제로 관측한 것을 말한다. 모수는 모집단 전체의 특성을 나타내는 값이고, 통계량은 표본의 특성을 나타내는 값이다. 이 문제에서 모집된 만 7세 아동 100명은 표본에 해당한다. 2. 히스토그램 그리기 R 프로그래밍을 이용하여 수축기 혈압(SBP)의 분포를 나타내는 히스토그램을 그렸다. 이를 통해 데이터의 분포 특성을 시각적으로 확인할 수 있다. 3. 중앙값 구하기 R 프로그래밍을 이용하여 이 데이터에 포함된 156명 전체의...2025.01.26
