총 134개
-
학생들의 IQ와 대학입시 합격률 간의 관계 분석2025.05.031. 단순확률 임의의 한 학생을 선정했을 때 그 학생이 대학에 합격할 확률은 52%이다. 200명의 학생 중 임의로 한 학생을 택했을 때, 그 학생의 IQ가 125를 넘을 확률은 4%이다. 2. 결합확률 임의의 한 학생을 선정했을 때 그 학생이 대학에 합격했을 뿐만 아니라 IQ도 125를 넘을 확률은 28%이다. 임의의 한 학생을 선정했을 때 그 학생이 대학에 합격했지만, IQ는 125를 넘지 않을 확률은 24%이다. 3. 조건부확률 무작위로 한 학생을 뽑았더니, 그 학생의 IQ가 125 미만이라는 것이 알려졌다. 이 학생이 대학에...2025.05.03
-
베이지안 주의와 빈도주의 - 통계학적 사고의 두 가지 접근 방식2025.05.101. 베이지안 주의 베이지안 주의는 18세기에 영국의 수학자 토마스 베이즈에 의해 개발된 통계적 접근 방식입니다. 이 접근 방식은 확률을 통해 불확실성을 모델링하고, 사전 지식과 데이터를 결합하여 사후 확률을 계산합니다. 베이지안 주의의 핵심 아이디어는 사전 지식과 데이터를 통합적으로 활용하여 추론을 수행한다는 것입니다. 이를 통해 우리가 가지고 있는 초기 믿음에 대한 업데이트를 진행하며, 불확실성을 줄이고 모델의 신뢰성을 높일 수 있습니다. 2. 빈도주의 빈도주의는 통계학의 전통적인 접근 방식으로, 빈도주의자들은 임의로 발생한 사...2025.05.10
-
교통에서의 베이지안 업데이팅2025.01.061. 베이지안 업데이팅 베이지안 업데이팅은 새로운 정보를 이전의 지식에 통합하여 지식을 갱신하는 통계적 추론 방법입니다. 운전 상황에 적용하면, 운전자는 현재 상황과 자신의 지식 및 경험을 고려하여 새로운 정보를 이전 정보에 결합하여 의사결정을 하게 됩니다. 예를 들어, 교차로에 접근할 때 운전자는 이전에 얻은 정보(차량 출발 방향 등)와 현재 상황(차량 위치, 속도 등)을 고려하여 예측을 수행하고 이를 이전 지식에 결합하여 의사결정을 내립니다. 이를 통해 운전자는 더욱 효과적인 의사결정을 할 수 있습니다. 2. 딜레마 존 딜레마 ...2025.01.06
-
MCMC를 활용한 베이지안 추론 - 동전 던지기 문제의 확률 추정 (파이썬예제풀이 포함)2025.05.091. MCMC(Markov Chain Monte Carlo) MCMC는 머신러닝과 통계학 분야에서 중요한 역할을 하는 AI(인공지능) 기법 중 하나입니다. MCMC는 복잡한 확률분포를 추정하거나 샘플링하기 위해 사용되며, 특히 베이지안 추론과 관련된 문제에 유용하게 적용됩니다. MCMC는 몬테카를로(Monte Carlo) 방법과 마코프 체인(Markov Chain)을 결합한 알고리즘으로, 마코프 체인을 이용하여 탐색 공간을 효과적으로 탐색하고 샘플링을 수행합니다. 2. 동전 던지기 문제 동전 던지기 문제는 간단하면서도 직관적인 문제...2025.05.09
-
확률론(probability theory)의 효과적 활용법 중 한 가지를 주제로 선택하여, 장점을 주장하고 논리적 근거를 예시 등을 구체적으로 제시한 후, 자신만의 고유한 의견으로 마무리 요약하여 기술하시오2025.01.231. 베이즈 정리 베이즈 정리는 사건의 발생 확률을 새로운 정보에 따라 갱신하는 수학적 방법이다. 기본적으로 베이즈 정리는 사전 확률(prior probability)을 바탕으로, 새로운 데이터(또는 증거)를 통해 사후 확률(posterior probability)을 계산하는 과정이다. 베이즈 정리는 다양한 상황에서 적용될 수 있는 유연한 도구로, 복잡한 문제에 대한 해결책을 제공한다. 베이즈 정리의 가장 큰 장점은 유연성과 실시간 데이터 반영이다. 기존의 통계적 접근법은 고정된 데이터를 바탕으로 예측을 하지만, 베이즈 정리는 새로...2025.01.23
-
확률이론에 대하여 요약하여 정리하시오2025.01.181. 확률의 공준 및 확률분포 확률의 공준은 고전적 개념에 속하기 때문에 주관적 개념을 통해 확률을 부여하면 문제가 발생한다. 때문에, 확률을 정의하는 대신 세가지 조건을 만족하면 이를 곧 확률로 한다는 것이 '확률의 공준'이다. 확률분포란 실험이나 관찰에서 시행 가능한 사상으로 구성된 표본공간의 확률 변수를 확률 값으로 이어주는 함수이다. 2. 확률법칙에 대한 정리 덧셈법칙은 여러 개의 사상 중 적어도 하나의 사상이 발생할 확률을 뜻한다. 여확률의 법칙에서 여확률이란 사상 A의 여사건이라고 한다면 사상 A가 일어나지 않은 확률이라...2025.01.18
-
확률변수와 확률분포의 개념 설명2025.05.141. 확률변수 확률은 특정한 사건이 발생할 가능성을 0과 1로 표현한 값이다. 확률은 객관적 확률과 주관적 확률로 구분되며, 고전적 확률 관점에서는 경험적 자료가 없어도 논리적 추론과 계산으로 선험적 확률을 구할 수 있다. 주관적 확률은 간접적 자료와 수집 자료를 활용하여 표본을 정리하고 사건 발생 확률을 정의한 다음 공준을 구하는 방식을 채택한다. 2. 확률분포 확률분포는 단일변량 확률분포, 결합확률분포, 주변확률분포, 조건부확률분포로 구분할 수 있다. 이러한 확률분포는 확률 덧셈법칙, 여확률법칙, 곱셈법칙, 통계적 독립성 등의 ...2025.05.14
-
확률이론에 대하여 요약하여 정리하시오2025.05.011. 확률의 공준과 확률분포 확률의 공준은 모든 확률 이론의 기본적인 전제가 된다. 공준 1은 표본공간에 속하는 모든 원소의 확률값이 0과 1 사이라는 것이며, 공준 2는 표본공간 내 어떤 사상 E가 발생할 확률은 사상 E가 속하는 원소들의 확률을 모두 더한 것과 같다는 것이다. 공준 3은 표본공간이 발생할 확률은 1이며 어떤 사상도 발생하지 않을 확률은 0이라는 것이다. 2. 확률법칙 확률에는 덧셈 법칙, 여 확률의 법칙, 곱셈 법칙이 성립한다. 덧셈 법칙은 표본공간 내 여러 사상 중 적어도 하나 이상의 사상이 발생할 확률은 두 ...2025.05.01
-
세상을 바꾸는 아름다운 수학 레포트 A+2025.04.301. 베이즈의 정리 베이즈 토마스 베이즈는 잉글랜드의 장로교 목사로, 신학 논문과 수학 논문을 발표했다. 베이즈 정리는 조건부 확률의 개념을 바탕으로 새로운 정보를 이용하여 사전 확률을 개선하는 방법을 제공한다. 베이즈 정리는 원인과 결과의 순서를 역으로 계산하여 사후 확률을 추정할 수 있다. 2. 베이지안의 추론 베이지안 추론은 사전 확률과 새로운 증거를 토대로 사후 확률을 추론하는 방법이다. 동전 던지기 실험을 통해 사전 확률과 사후 확률의 변화를 보여주며, 데이터가 충분할 경우 서로 다른 사전 확률에서 시작해도 동일한 사후 확...2025.04.30
-
베이지안 네트워크 이용해서 잔디가 젖어있는 원인 추정하기2025.01.171. 베이지안 네트워크 베이지안 네트워크는 확률적 모델을 기반으로 사건 간의 의존 관계를 표현하는 도구입니다. 이를 통해 복잡한 문제를 구조적으로 분석하고 예측할 수 있습니다. 이 예제에서는 베이지안 네트워크를 사용하여 비가 오는지, 스프링클러가 작동하는지, 그리고 잔디가 젖는지에 대한 관계를 모델링하고 있습니다. 2. 조건부 확률 베이지안 네트워크에서는 각 변수 간의 의존 관계를 나타내기 위해 조건부 확률 분포를 사용합니다. 이를 통해 주어진 조건하에서 특정 사건이 발생할 확률을 계산할 수 있습니다. 이 예제에서는 비의 발생 확률...2025.01.17
