
총 89개
-
규칙기반인공지능, 머신러닝, 딥러닝의 정의와 장단점2025.01.211. 규칙기반 인공지능 규칙기반 인공지능은 인간의 지능을 기계에 부여하고자 하는 시도로, 계산 과정을 정의하는 기호와 기호 간 연산 규칙을 정의하는 초기 인공지능 기술입니다. 이는 자연어 처리, 수학적 정리 증명, 문제 해결, 전문가 시스템, 의사결정, 게임 등의 분야에서 성과를 보였지만, 학습 능력 부족과 패턴 인식 한계로 인해 1980년대부터 쇠퇴하게 되었습니다. 2. 머신러닝 머신러닝은 데이터를 학습하여 프로그램 스스로 결과를 얻도록 하는 인공지능 기술입니다. 특성 추출과 모델 학습을 통해 자율주행, 문자 인식, 개인비서, 의...2025.01.21
-
서포트 벡터 머신(Support Vector Machine, SVM)2025.05.101. 서포트 벡터 머신(Support Vector Machine, SVM) 서포트 벡터 머신(Support Vector Machine, SVM)의 이름은 알고리즘의 기본 원리와 핵심 개념에 기반하여 지어졌습니다. 데이터 포인트들을 분류하기 위해 사용되는 초평면(hyperplane)의 위치는 이 서포트 벡터들에 의해 결정됩니다. 서포트 벡터는 결정 경계와 가장 가까운 데이터 포인트들을 의미합니다. 이러한 포인트들은 결정 경계 주변에서 서로 다른 클래스에 속하는 데이터들을 분리하는 역할을 수행합니다. SVM은 주어진 데이터를 기반으로 ...2025.05.10
-
아마존의 클라우드 컴퓨팅 활동 요약2025.04.291. 광고 및 마케팅 기술 AWS는 퍼스트 파티 데이터 플랫폼, 데이터 협업, 광고 플랫폼, 광고 인텔리전스 및 다양한 고객 경험을 재정립하는데 도움이 되는 컴퓨팅, 기계 학습 및 분석 기능을 제공하여 광고 및 마케팅 혁신을 가속화하고 있다. 2. 금융 서비스 AWS는 뱅킹, 결제, 자본 시장, 보험 분야의 금융 서비스 기관에 안전하고 복원력 있는 글로벌 클라우드 인프라 및 서비스를 제공하여 미래의 니즈에 대응하는데 도움을 주고 있다. 3. 게임 기술 AWS for Games는 게임 구축, 실행 및 성장에 도움이 되는 6가지 솔루션...2025.04.29
-
[영어에세이] 4차 산업혁명에 대하여2025.04.301. 4차 산업혁명 4차 산업혁명은 제조업 및 다른 산업에서의 자동화와 데이터 교환을 설명하는 용어입니다. 이는 18세기 증기 동력 사용부터 20세기 후반 생산 공정의 자동화에 이르는 이전 3차 산업혁명을 기반으로 합니다. 4차 산업혁명은 물리적 및 디지털 시스템의 통합을 통해 '사물인터넷'이라고 알려진 새로운 기술 수준을 나타냅니다. 이는 기계, 장치 및 물체가 인터넷에 연결되어 실시간으로 데이터를 교환할 수 있음을 의미합니다. 이를 통해 기계가 수신한 데이터를 기반으로 의사 결정을 내릴 수 있어 인간의 개입이 줄어들 수 있습니다...2025.04.30
-
노션AI(Notion AI)란2025.05.021. 노션AI 소개 노션AI는 인공 지능과 기계 학습 기능을 통합하여 기능을 향상시키는 소프트웨어 플랫폼입니다. 개인과 기업이 정보를 정리하고, 다른 사람과 협업하고, 워크플로를 간소화할 수 있도록 설계된 올인원 작업 공간입니다. 노션AI는 자연어 처리(NLP)를 사용하여 인간의 언어를 이해하고 해석하며, 데이터를 분석하고 분류할 수 있어 사용자가 필요한 정보를 쉽게 찾을 수 있습니다. 또한 기계 학습 알고리즘을 사용하여 개별 사용자에 대한 기능을 개인화합니다. 2. 노션AI의 역사 노션AI는 2016년에 Ivan Zhao, Sim...2025.05.02
-
경영정보시스템 ) 인공지능의 개념과 기술 그리고 활용사례에 대해 조사2025.01.241. 인공지능의 개념 인공지능의 정의는 범위에 따라 다양하지만, 포괄적인 범위로 인공지능을 정의 내리자면 인공지능이란 어떠한 문제를 스스로 해결할 수 있는 능력을 갖춘 시스템을 말한다. 즉, 인간의 지적 능력을 기계나 컴퓨터를 통해 구현하는 기술이다. 인공지능은 크게 약한 인공지능과 강한 인공지능으로 나눌 수 있다. 약한 인공지능은 특정한 분야나 목표만을 해결할 수 있는 인공지능을 뜻하며, 강한 인공지능은 다양한 목표를 해결할 수 있는 인공지능이다. 2. 인공지능 기술 - 기계학습 기계학습은 알고리즘을 연구하고 활용하는 기술로 엄청...2025.01.24
-
인공지능의 개념과 기술 그리고 활용사례2025.05.131. 약한 인공지능과 강한 인공지능의 비교 약한 인공지능은 특정 목적을 위해 개발된 인공지능으로, 스스로 인식할 수는 없지만 인공적인 기능을 만들어낼 수 있다. 반면 강한 인공지능은 스스로 인식하여 고도의 문제를 해결할 수 있는 지능을 만들어내는 것을 말한다. 현재 약한 인공지능은 많이 발전했지만 강한 인공지능의 발전은 미약한 상황이다. 2. 기계학습의 개념과 특징 기계학습은 컴퓨터 프로그램이 데이터 처리 경험을 바탕으로 향상된 학습을 통해 정보 처리 능력을 향상시키는 기술이다. 정보 처리 능력을 향상시켜 방대한 데이터를 바탕으로 ...2025.05.13
-
확률론(probability theory)의 효과적 활용법 중 한 가지를 주제로 선택하여, 장점을 주장하고 논리적 근거를 예시 등을 구체적으로 제시한 후, 자신만의 고유한 의견으로 마무리 요약하여 기술하시오2025.01.231. 베이즈 정리 베이즈 정리는 사건의 발생 확률을 새로운 정보에 따라 갱신하는 수학적 방법이다. 기본적으로 베이즈 정리는 사전 확률(prior probability)을 바탕으로, 새로운 데이터(또는 증거)를 통해 사후 확률(posterior probability)을 계산하는 과정이다. 베이즈 정리는 다양한 상황에서 적용될 수 있는 유연한 도구로, 복잡한 문제에 대한 해결책을 제공한다. 베이즈 정리의 가장 큰 장점은 유연성과 실시간 데이터 반영이다. 기존의 통계적 접근법은 고정된 데이터를 바탕으로 예측을 하지만, 베이즈 정리는 새로...2025.01.23
-
데이터마이닝의 정의와 활용 분야2025.01.181. 데이터마이닝의 정의 데이터마이닝은 대규모 데이터 세트에서 통계적이고 수학적인 기법을 활용하여 유용한 정보와 패턴을 추출하는 과정을 말한다. 이는 데이터베이스, 데이터 웨어하우스 또는 다양한 데이터 소스로부터 데이터를 수집하고 분석함으로써 이루어진다. 데이터마이닝은 기계 학습, 통계 분석, 패턴 인식, 인공지능 등의 다양한 분야의 기법과 원칙을 포괄하는 다중 학문적인 접근 방법을 사용한다. 2. 데이터마이닝 활용 분야: 상업 분야 온라인 소매업체는 고객의 구매 이력, 검색 기록, 선호도 등을 분석하여 개별 고객에게 맞춤형 제안을...2025.01.18
-
인공지능의 개념과 기술 그리고 활용사례에 대해 조사하시오2025.05.121. 약한 인공지능과 강한 인공지능의 비교 인공지능은 강한 인공지능과 약한 인공지능으로 구분됩니다. 강한 인공지능은 사람과 같은 지능을 가진 인공지능이고, 약한 인공지능은 특정 문제 또는 분야에 국한해 인간처럼 지능적 행동을 할 수 있는 인공지능입니다. 강한 인공지능은 마음을 가지고 사람처럼 느끼며 지능적으로 행동하는 기계이지만, 약한 인공지능은 사람의 지능적 행동을 흉내낼 수 있는 수준에 불과합니다. 2. 기계학습의 개념과 특징 기계학습은 컴퓨터 시스템의 패턴과 추론에 의존해 명시적 지시 없이도 태스크에 대한 수행에 사용하는 알고...2025.05.12