총 159개
-
이산확률분포에 대하여 요약하여 정리하시오2025.05.021. 이산확률분포 이산 확률 분포는 이산 랜덤 변수의 각 가능한 결과의 확률을 설명하는 통계 개념입니다. 이산 랜덤 변수는 값이 유한하거나 셀 수 없을 정도로 무한한 수의 값만 가질 수 있는 변수입니다. 이산 확률 분포에는 이항분포, 초기하분포, 포아송분포 등이 있습니다. 2. 이항분포 이항 분포는 고정된 수의 독립 시행에서 특정 수의 성공 확률을 설명하는 이산 확률 분포입니다. 각 시행은 두 가지 가능한 결과(성공 또는 실패)만 있고 성공 확률은 모든 시행에 걸쳐 일정합니다. 이항 분포는 시행 횟수(n)와 각 시행에서의 성공 확률...2025.05.02
-
베이지안 네트워크 이용해서 잔디가 젖어있는 원인 추정하기2025.01.171. 베이지안 네트워크 베이지안 네트워크는 확률적 모델을 기반으로 사건 간의 의존 관계를 표현하는 도구입니다. 이를 통해 복잡한 문제를 구조적으로 분석하고 예측할 수 있습니다. 이 예제에서는 베이지안 네트워크를 사용하여 비가 오는지, 스프링클러가 작동하는지, 그리고 잔디가 젖는지에 대한 관계를 모델링하고 있습니다. 2. 조건부 확률 베이지안 네트워크에서는 각 변수 간의 의존 관계를 나타내기 위해 조건부 확률 분포를 사용합니다. 이를 통해 주어진 조건하에서 특정 사건이 발생할 확률을 계산할 수 있습니다. 이 예제에서는 비의 발생 확률...2025.01.17
-
MCMC 모델링2025.05.091. MCMC (Markov Chain Monte Carlo) MCMC는 확률적인 모델링과 추론을 위해 사용되는 강력한 도구입니다. MCMC는 샘플링 알고리즘 중 하나로, 타겟 분포로부터 샘플을 추출하는 기법입니다. 이를 통해 우리는 원하는 분포로부터 난수를 생성하거나, 분포의 특성을 파악하는데 도움을 얻을 수 있습니다. 2. 정규분포 샘플링 이 예제에서는 MCMC를 사용하여 정규분포로부터 샘플을 추출하는 방법을 살펴봅니다. 정규분포는 많은 자연 현상을 모델링할 때 사용되는 중요한 분포 중 하나이므로, MCMC를 통해 정규분포로부터...2025.05.09
-
[경영통계학] 이산확률분포에 대하여 요약 정리하시오.2025.01.241. 이산확률분포의 개념 이산확률분포(discrete probability distribution)는 확률변수가 연속적이지 않고 개별적인 값을 취할 때 그 값들에 할당된 확률의 분포를 의미한다. 이산형 확률변수는 1, 2, 3과 같은 정수형 값이나 '성공'과 '실패'처럼 서로 명확하게 구분되는 결과로 나타난다. 이러한 확률변수에 대해 각 값이 발생할 확률을 정리한 것이 이산확률분포다. 2. 이산확률분포의 활용 이산확률분포는 품질 관리, 금융 및 경제 분야, 의료 및 공공 정책 분야 등에서 다양하게 활용된다. 제조업에서는 이항분포를 ...2025.01.24
-
최대 우도 추정을 통한 확률 모델의 매개변수 추정2025.05.081. 최대 우도 추정(Maximum Likelihood Estimation, MLE) 최대 우도 추정은 주어진 데이터를 가장 잘 설명하는 모델의 매개변수 값을 찾는 과정으로, 우도 함수를 최대화하는 매개변수 값을 추정합니다. 이 방법은 데이터가 주어진 상황에서 가장 가능성이 높은 모델의 매개변수를 선택함으로써 최적의 예측을 수행하는데 도움을 줍니다. 2. 확률 모델링 확률 모델링은 다양한 분야에서 데이터 분석과 예측에 핵심적인 역할을 하고 있습니다. 데이터로부터 모델의 매개변수를 추정하는 과정은 모델의 정확성과 신뢰성을 높이는 데 ...2025.05.08
-
평가 데이터를 활용하여 기존 모델을 업데이트하는 베이지안 추론 (파이썬코드 예제포함)2025.05.091. 베이지안 추론 베이지안 추론은 데이터를 통해 모델을 업데이트하고 불확실성을 다루는데 유용한 통계적 추론 방법입니다. 특히, 새로운 데이터가 주어진 상황에서 모델의 파라미터를 추정하고 예측하기 위해 사용됩니다. 베이지안 추론은 사전 분포와 관측 데이터를 조합하여 사후 분포를 계산하며, 이를 통해 모델의 불확실성을 업데이트할 수 있습니다. 2. 모델 업데이트 데이터에 대한 정보를 사전 분포에 반영하고, 관측 데이터와 사전 분포를 조합하여 사후 분포를 계산함으로써 신뢰할 수 있는 결과를 얻을 수 있습니다. 이를 통해 기존 모델을 새...2025.05.09
-
이산 분포의 효과적 활용법2025.01.241. 이산 분포 이산 분포는 데이터의 특성과 패턴을 이해하고 분석하는 데 중요한 도구로 활용된다. 이산 분포는 명확한 값으로 구분되는 사건이나 개수를 모델링하는 데 사용되며, 특히 사건이 발생할 횟수나 특정 카테고리로 구분되는 데이터를 다룰 때 유용하다. 이산 분포의 장점으로는 명확한 사건 수 모델링, 확률 질량 함수 사용, 베르누이 분포와 이항 분포의 활용 등이 있다. 2. 이산 분포의 효과적 활용법 이산 분포는 품질 관리, 마케팅 분석, 사건 발생 횟수 예측, 카테고리 데이터 분석, 첫 번째 성공까지의 실패 횟수 분석 등 다양한...2025.01.24
-
[경영통계학 A+] 이산확률분포에 대해 요약하여 정리하시오.2025.01.171. 이산확률분포 확률분포란 확률변수 X가 특정한 값을 가질 확률을 나타내는 분포를 말한다. 이러한 확률분포는 확률변수의 종류에 따라 크게 이산확률분포와 연속확률분포로 나뉜다. 이산확률분포란 이산확률변수에 대응하는 확률분포를 말한다. 즉, 확률변수 x가 취하는 값이 이산집합이어서 유한집합이거나 가산일 때, 이에 대응하는 확률분포를 이산 확률분포라고 한다. 이항분포, 포아송분포, 기하분포, 초기하분포 등이 대표적인 이산확률분포다. 2. 이항분포 이항분포는 연속된 n번의 독립적 시행에서 각 시행이 확률 p를 가질 때의 이산확률 분포이다...2025.01.17
-
확률론(probability theory) 의 효과적 활용법 중 한 가지를 주제로 선택하여, 장점을 주장하고 논리적 근거를 예시 등으로 구체적 제시한 후, 자신만의 고유한 의견으로 마무리 요약2025.01.121. 예측 모델링의 기본 원리와 적용 분야 예측 모델링은 확률론의 기본 원리를 활용하여 과거 데이터를 분석하고, 이를 통해 미래의 사건이나 결과를 예측하는 과정이다. 이 방법론은 데이터 과학, 통계학, 인공지능 분야에서 광범위하게 적용되며, 기업의 의사결정 과정을 지원하는 데 있어 핵심적인 역할을 한다. 예측 모델링의 핵심 원리는 과거 데이터에 내재된 패턴과 상관관계를 식별하고, 이를 활용하여 미래의 사건 발생 가능성을 수치로 표현하는 것이다. 이 과정에서 확률론은 불확실성을 수량화하고, 예측의 신뢰도를 평가하는 데 중요한 기반을 ...2025.01.12
-
머신러닝에서의 불확실성2025.05.111. 데이터 불확실성 데이터의 일부 샘플에 레이블이 없거나 부정확한 경우, 데이터에 잡음이나 이상치가 포함되어 있거나, 데이터가 불완전한 경우 등 데이터 불확실성이 발생할 수 있습니다. 이는 모델이 정확한 예측을 하기 어렵게 만듭니다. 2. 모델 불확실성 모델이 복잡할수록 과적합될 가능성이 높아져 일반화 능력이 감소하고, 모델의 파라미터 값이 정확하게 알려지지 않는 경우 예측의 불확실성이 증가할 수 있습니다. 3. 환경 불확실성 데이터의 분포가 시간에 따라 변하거나 외부 요인이 발생하는 경우, 모델이 이러한 변동성을 정확하게 모델링...2025.05.11
