총 11개
-
퍼셉트론의 한계에 대한 논의2025.05.081. 퍼셉트론의 한계 퍼셉트론은 데이터에서 학습하고 정보를 분류하는 능력으로 주목받는 인공신경망이지만, 실제 적용을 제한하는 특정 한계가 있다. 주요 한계로는 선형적으로 분리 가능한 문제로 제한, 느린 수렴 속도, 초기 가중치에 민감, 이진 분류로 제한 등이 있다. 이러한 한계를 극복하기 위해 비선형 문제와 다중 클래스 분류를 처리할 수 있는 다층 퍼셉트론과 같은 보다 복잡한 신경망이 개발되었다. 1. 퍼셉트론의 한계 퍼셉트론은 선형 분리 가능한 문제만 해결할 수 있다는 한계가 있습니다. 이는 퍼셉트론이 입력 데이터를 단순히 선형 ...2025.05.08
-
딥러닝 2024년 2학기 방송통신대 출석수업과제물) 인공신경망과 관련된 설명 중 올바른 것을 선택하시오. 다층 퍼셉트론의 구조를 확장하는 방법 등2025.01.261. 인공신경망 인공신경망은 생물학적 뉴런의 작동 원리를 모방하여 만든 기계 학습 모델입니다. 다층 퍼셉트론(MLP)은 인공신경망의 한 형태로, 입력층, 하나 이상의 은닉층, 그리고 출력층으로 구성됩니다. 인공신경망은 복잡한 문제를 해결할 수 있는 능력이 있으며, 활성화 함수를 통해 비선형 관계를 학습할 수 있습니다. 2. 경사 하강법 경사 하강법은 손실 함수의 기울기를 계산하고 이를 활용하여 가중치를 업데이트하는 최적화 알고리즘입니다. 보폭 크기(learning rate)가 너무 크면 손실 함수가 발산하는 문제가 발생할 수 있습니...2025.01.26
-
고려대학교 객체지향프로그래밍 A+ 기말고사 치팅시트2025.05.101. 프로그래밍 언어 프로그래밍 언어는 컴퓨터가 수행할 수 있는 모든 것을 설명할 수 있어야 하며, 프로그래머가 의도한 바를 정확히 표현할 수 있어야 합니다. 튜링 기계는 무한한 테이프, 읽기/쓰기/삭제 장치, 상태 테이블을 가지고 있으며 튜링 완전하거나 튜링 동등합니다. 실제 컴퓨터는 선형 한정 레지스터 기계(거의 만족)입니다. 대부분의 언어가 튜링 완전하기 때문에 문제가 되지 않습니다. 프로그래밍 언어는 오류 방지, 사용성 등의 기준을 만족해야 합니다. 2. 프로그래밍 패러다임 프로그래밍 패러다임은 좋은 프로그래밍 언어의 기준을...2025.05.10
-
방송통신대학교(방통대) 머신러닝 과목 출석수업과제물 리포트2025.01.241. 머신러닝의 일반적 처리 과정 머신러닝의 일반적인 처리 과정은 학습과 추론으로 구성됩니다. 학습 단계에서는 데이터 전처리, 특징 추출, 학습 진행, 결정 함수 생성 등의 과정을 거치고, 추론 단계에서는 테스트 데이터 전처리, 특징 추출, 추론 진행, 처리 결과 획득 등의 과정을 거칩니다. 2. 머신러닝의 4가지 주제 머신러닝의 4가지 주요 주제는 분류, 회귀, 군집화, 특징 추출입니다. 분류는 입력을 미리 정의된 이산적인 출력으로 매핑하는 문제이고, 회귀는 입력을 연속적인 실수 값으로 매핑하는 문제입니다. 군집화는 데이터를 교집...2025.01.24
-
AI와 로봇이 가족치료 및 상담을 대신할 수 있는지에 대한 찬반 의견2025.01.201. 인공지능의 역사 인공지능의 역사는 1900년대 중반부터 시작되었으며, 점진적 발전기 이후 1990년대 후반에서 2000년대 초반에 들어서서 비약적인 발전을 이루게 되었다. 인공지능이라는 용어는 1955년 디트머스 하계 연구 프로젝트 제안서에서 처음 사용된 것으로 알려져 있다. 2. 인공지능의 정의 인공지능이라는 용어가 세상에 출현하게 된 이후 본 개념은 수십 년간 다양한 방식으로 정의되어 왔다. 최근 전 세계는 인간을 대신해 기계가 스스로 무엇인가를 하는 새로운 무인장비들을 선보이고 있다. 1. 인공지능의 역사 인공지능의 역사...2025.01.20
-
인공지능의 개념과 기술 그리고 국내외의 활용사례2025.01.181. 인공지능의 분류 인공지능은 크게 약한 인공지능과 강한 인공지능으로 분류할 수 있다. 약한 인공지능은 기계학습 기술을 가진 전문가들이 설계한 시스템으로, 특정 분야에서 지능적인 행동을 한다. 강한 인공지능은 사람처럼 자유롭게 생각하고 감정을 표현할 수 있는 범용 인공지능을 의미한다. 2. 기계학습 개념 및 특징 기계학습은 데이터를 분석하고 학습한 내용을 의사결정에 적용하는 알고리즘이다. 기계학습은 다수의 사례를 통해 패턴을 학습하고 이를 바탕으로 판단한다는 점에서 '패턴 인식'이라고도 불린다. 기계학습은 알고리즘을 통해 데이터를...2025.01.18
-
인공지능 관련 레포트(A+자료)2025.01.171. 인공지능의 개념 및 분류 인공지능(Artificial intelligence)은 데이터를 통해 인간이 가진 학습, 분석, 추론 등 다양한 능력을 모방하고 구축하는 컴퓨터 과학 기술을 말한다. 인공지능은 능력 및 학습 방식, 응용 분야 등 여러 기준을 통해 분류되며, 좁은 인공지능(ANI), 일반 인공지능(AGI), 초지능(Superintelligence) 등으로 나뉜다. 2. 인공지능의 역사 인공지능의 역사는 1943년 뉴런의 개념 도입, 1959년 퍼셉트론 개발, 2010년 딥러닝 기술 발전 등으로 이어져 왔다. 인공지능이라...2025.01.17
-
인공지능의 개념과 기술 그리고 활용사례2025.05.131. 약한 인공지능과 강한 인공지능의 비교 약한 인공지능은 특정 목적을 위해 개발된 인공지능으로, 스스로 인식할 수는 없지만 인공적인 기능을 만들어낼 수 있다. 반면 강한 인공지능은 스스로 인식하여 고도의 문제를 해결할 수 있는 지능을 만들어내는 것을 말한다. 현재 약한 인공지능은 많이 발전했지만 강한 인공지능의 발전은 미약한 상황이다. 2. 기계학습의 개념과 특징 기계학습은 컴퓨터 프로그램이 데이터 처리 경험을 바탕으로 향상된 학습을 통해 정보 처리 능력을 향상시키는 기술이다. 정보 처리 능력을 향상시켜 방대한 데이터를 바탕으로 ...2025.05.13
-
비즈니스 애널리틱스와 관련 기술의 정의 및 역사2025.01.261. 비즈니스 애널리틱스 비즈니스 애널리틱스는 기업의 의사 결정을 지원하기 위해 데이터를 분석하여 통찰력을 도출하고 이를 기반으로 전략을 수립하는 과정입니다. 비즈니스 애널리틱스는 20세기 중반 컴퓨터 기술의 발전과 함께 시작되었으며, 통계 기법, 데이터 마이닝, 예측 모델링, 인공지능 등을 활용하여 비즈니스 성과를 개선하는 것을 목표로 합니다. 2. 데이터 과학 데이터 과학은 다양한 형태의 데이터를 분석하고 의미 있는 정보를 추출하는 학문적 분야입니다. 통계학, 수학, 컴퓨터 과학 등을 기반으로 하며, 데이터 처리, 분석, 예측 ...2025.01.26
-
물리 정보화 신경망(Physics-Informed Neural Network, PINN)2025.05.101. 물리 정보화 신경망(Physics-Informed Neural Network, PINN) 물리 정보화 신경망(Physics-Informed Neural Network, PINN)은 물리학적인 지식을 신경망 구조에 통합하여 과학적 모델링 및 예측에 사용되는 기술입니다. 이 방법은 데이터 기반 기계 학습과 물리학적 모델링을 결합하여 주어진 물리적 시스템에 대한 효율적인 모델링을 수행할 수 있습니다. PINN은 물리학적 법칙과 제약 조건을 신경망 아키텍처에 내재화하여 물리학적 문제를 해결하며, 제한된 데이터 세트로부터 모델을 학습하...2025.05.10
