
총 565개
-
의료 문헌과 환자 기록의 자연어 처리를 통한 지식 추출2025.05.111. 자연어 처리(NLP)의 개념과 의의 자연어 처리(Natural Language Processing, NLP)는 인간의 언어를 기계가 이해하고 처리하는 기술로, 의료 분야에서는 의료 문헌과 환자 기록의 텍스트를 분석하는 데 사용됩니다. 의료 분야에서는 의료 전문가들이 최신 연구 결과나 진료 정보를 빠르게 얻고 활용하는 것이 중요하며, NLP는 이러한 지식 추출을 지원합니다. 2. 의료 문헌에서의 NLP 응용 NLP는 의료 논문, 저널, 연구 보고서 등의 의료 문헌에서 중요한 정보를 추출하고, 의료 지식을 확장하는 데 활용됩니다....2025.05.11
-
[R & E 활동 대회] 다중 연결 리스트(Multi-Linked List)를 이용한 자연어 처리 방법론 연구2025.05.121. 다중 연결 리스트(Multi-Linked List) 다중 연결 리스트(Multi-Linked List)는 단일 연결 리스트와 비슷한 구조이나 동적 할당(Dynamic allocation)과 노드 구조체를 이용하여 각 노드 간 연결이 다중으로 이루어지도록 한 자료 구조입니다. 여러 종류의 단어가 한 특성을 공유하여 다음 문장으로 연결되어야 하는 처리 구조를 이루어야 하므로 본 연구에서 이용한 자료 구조입니다. 2. 자연어 처리 본 연구에서는 신문 기사를 활용한 빅 데이터를 C언어로 구조화하여 단어 간의 상관관계를 파악하여 새로운...2025.05.12
-
자연어처리 대표논문 읽기 과제2025.01.121. 신경 기계 번역 신경 기계 번역은 최근에 제안된 기계 번역 접근법으로, 기존의 통계 기계 번역과 달리 단일 신경망을 구축하여 번역 성능을 극대화하는 것을 목표로 합니다. 본 논문에서는 기존 신경 기계 번역 모델의 한계를 극복하기 위해 RNN 검색 모델을 제안하였고, 이를 통해 소스 문장의 관련 단어나 주석과 대상 단어를 올바르게 정렬할 수 있게 되었습니다. 실험 결과 제안된 모델이 기존 인코더-디코더 모델을 크게 능가하고 문장 길이에 더 견고한 것으로 나타났습니다. 2. 기계 번역 기계 번역은 소스 문장 x의 조건부 확률 p(...2025.01.12
-
정보처리 정리2025.01.091. 자연어 처리 자연어 처리는 컴퓨터가 자연언어 이해와 출력을 가능하도록 연구하는 분야입니다. 처리 과정은 단어에 반응하고 분석과 의미파악과정을 거치고, 문법적, 논리적 구조를 파악한 후 맥락을 이해하여 의도를 파악하고 적용하고 추론하여 발화계획을 세우고 문법적 논리적 구조로 실현하여 단어로 반응하는 것입니다. 응용 분야로는 기계번역, 자동통역, 사람과 기계가 소통하는 분야, 텍스트 이해로 질의응답 시스템, 텍스트 요약, 웹 문서 검색 등이 있습니다. 2. 정규표현식 정규표현식이란 문자의 형식을 지정하는 언어입니다. 문자열을 조작...2025.01.09
-
마코프 체인(Markov Chain)을 통해 알아보는 GPT의 작동 원리 (파이썬코딩 예제포함)2025.05.091. 마코프 체인 마코프 체인은 상태 공간을 가지고 그 상태들 간의 전이 확률을 나타내는 모델입니다. 이 모델을 사용하여 다양한 예제를 해결할 수 있습니다. 날씨 예측, 텍스트 생성, 주식 시장 예측, 게임 시뮬레이션 등 다양한 분야에서 활용될 수 있습니다. 2. 문장 생성 마코프 체인을 이용한 문장 생성은 자연어 처리와 인공지능 분야에서 흥미로운 주제 중 하나입니다. 이 예제는 텍스트 데이터를 활용하여 이전 단어와 현재 단어의 관계를 파악하고, 그 관계를 기반으로 새로운 문장을 생성하는 방법을 알아봅니다. 3. GPT(Genera...2025.05.09
-
LLM(Large Language Model)과 LMM(Large Multimodal Model)의 비교 및 딥러닝과의 관계2025.01.261. LLM(Large Language Model) LLM은 대규모 텍스트 데이터를 학습하여 사람처럼 언어를 이해하고 생성할 수 있는 능력을 갖춘 모델입니다. 이는 자연어 처리(NLP) 기술의 발전을 기반으로 하며, 딥러닝 기술을 활용해 언어의 문법적 구조와 단어 간 의미적 관계를 학습합니다. LLM은 챗봇, 자동 번역, 텍스트 요약 등 다양한 분야에서 활용되고 있습니다. 2. LMM(Large Multimodal Model) LMM은 텍스트뿐만 아니라 이미지, 소리, 동영상 등 다양한 데이터를 통합적으로 처리할 수 있는 인공지능 ...2025.01.26
-
ChatGPT 설명 및 이용 가이드2025.05.071. ChatGPT ChatGPT는 최근 인공지능 분야에서 주목받는 대화 모델의 일종입니다. 이 모델은 OpenAI에서 개발한 GPT(Generative Pre-trained Transformer) 모델의 일부로, 자연어 처리 기술과 딥러닝 알고리즘을 활용하여 인간과 대화하는 역할을 수행합니다. ChatGPT는 챗봇, 인공지능 비서, 상담원 등 다양한 분야에서 활용됩니다. 2. Transformer ChatGPT(Generative Pre-trained Transformer)은 딥러닝 기술 중 하나인 Transformer 구조를 기...2025.05.07
-
현대 컴퓨터 과학의 발전과 알고리즘의 역할2025.05.161. 컴퓨터 과학의 발전과 알고리즘의 역할 현대의 컴퓨터 과학 발전은 꾸준한 연구와 발전의 연속이라 할 수 있습니다. 특히, 알고리즘이 이러한 발전의 핵심이 되어왔다는 것이 많은 학자들의 공통된 견해입니다. 본 장에서는 'The Nature of Computation'이라는 논문을 통해 현대 컴퓨터 과학의 기원과 알고리즘의 중요성에 대하여 자세히 알아보겠습니다. 2. 자연어 처리 분야의 딥러닝 동향 최근 연구에서는 자연 언어 처리(NLP) 분야에서 딥러닝의 동향을 관찰할 수 있습니다. 이 주제에 대하여, 최근 논문 'Attentio...2025.05.16
-
Chat GPT의 원리, 활용, 한계와 업무 효율화2025.01.151. Chat GPT의 개요 Chat GPT는 OpenAI에서 개발한 자연어 처리(NLP) 모델로, 대화형 인공지능 서비스입니다. Chat GPT는 대규모 언어 모델을 기반으로 하며, 대량의 텍스트 데이터를 학습하여 자연어 이해 및 생성 능력을 갖추고 있습니다. Chat GPT는 다양한 응용 분야에서 활용될 수 있으며, 확률적 응답 생성, 강화학습을 통한 성능 개선, 언어 모델의 확장성 등의 특징을 가지고 있습니다. 2. 자연어 처리와 Chat GPT 자연어 처리(NLP)는 컴퓨터가 인간의 언어를 이해하고 생성할 수 있도록 하는 기...2025.01.15
-
인공지능을 이용한 채팅 기능 챗GPT에 대한 조사 및 느낀점2025.05.061. 챗GPT 챗GPT는 OpenAI에서 개발한 대화형 인공지능 언어모델입니다. 챗GPT는 인간과 자연어로 대화하는 것처럼 이전 대화 기록과 문맥을 파악하여 자연스러운 답변을 생성할 수 있습니다. 챗GPT는 Transformer라는 딥러닝 모델 아키텍처를 기반으로 하며, 대량의 텍스트 데이터를 학습하여 자연어 이해와 생성 능력을 향상시킵니다. 챗GPT는 대화 생성 능력이 뛰어나기 때문에, 챗봇, 가상 비서, 자연어 이해(NLU), 기계 번역(MT) 등의 분야에서 활용될 수 있습니다. 2. 챗GPT의 역사 및 배경 챗GPT 모델은 O...2025.05.06