총 50개
-
모수적 추정을 통한 데이터 기반 분포 모형화 2 (Python 코딩)2025.05.131. 모수적 추정 모수적 추정은 주어진 수학적 모델의 파라미터를 데이터를 이용하여 추정하는 방법으로, 데이터의 불확실성을 모델링하고 신뢰성 있는 결론을 도출하는데 유용합니다. 모수적 추정의 기본 개념과 원리를 설명하고, 이를 활용하여 실제 데이터를 분석하여 모델의 파라미터를 추정하는 예시를 제시할 것입니다. 2. 모수적 방법과 비모수적 방법 모수적 방법과 비모수적 방법은 데이터를 모델링하는 데 사용되는 접근 방식에 차이가 있습니다. 두 방법은 데이터에 대한 가정과 모델의 유연성 측면에서 서로 다릅니다. 블로그에서는 두 방법을 비교하...2025.05.13
-
데이터로부터 분포 추정하기2025.05.091. 분포 추정 데이터 분석에서 가장 기본적인 작업 중 하나는 주어진 데이터로부터 분포를 추정하는 것입니다. 분포 추정은 데이터의 특성과 패턴을 이해하고, 통계적 추론과 예측을 위한 기반을 마련하는 핵심 과정입니다. 분포 추정은 주로 확률분포를 가정하고 해당 분포의 파라미터를 추정하는 과정으로 수행되지만, 때로는 데이터가 정규분포나 다른 특정한 분포를 따르지 않는 경우도 있습니다. 이럴 때는 비모수적인 방법이나 시각적인 평가를 통해 분포를 추정하는 것이 필요합니다. 2. 비모수적 방법 비모수적 방법은 통계학에서 사용되는 개념으로, ...2025.05.09
-
데이터마이닝 ) 나무 형태를 이용한 지식 표현 사례2025.01.031. 의사결정나무 의사결정나무는 예측모형에서 가장 많이 사용되며 의사결정 규칙을 도표화하여 대상 집단을 분류하거나 예측하는 분석 방법입니다. 의사결정나무의 장점은 나무구조에 의해 모형이 표현되어 사용자의 이해가 쉽고, 유용한 예측변수나 비선형성을 자동으로 찾아낼 수 있으며, 선형성이나 정규성, 등분산성과 같은 가정을 필요로 하지 않는 비모수적인 방법이라는 것입니다. 하지만 의사결정나무 모형은 연속형 변수를 비연속적인 값으로 취급하여 분리의 경계점에서 예측오류가 큰 가능성이 있고, 선형성과 주 효과를 가지지 못한다는 단점이 있습니다....2025.01.03
-
서울대학교 보건통계학개론 14주차 과제답안2025.05.101. 모집단의 모수 모집단의 모수에 대한 설명이 필요 없다. 예를 들어 정규분포를 따르는지 검정하기 위하여 적합도 검정을 수행할 때, 모집단의 모수를 따로 언급할 필요가 없다. 2. 비모수적 검정 비모수적 검정은 모집단의 확률분포함수에 대한 가정을 할 수 없는 경우에도 이용할 수 있다. 일부 비모수적 검정은 모수적 방법에 비해 계산이 간단하고 적용이 쉽다는 장점이 있다. 따라서 모수적 검정의 계산량이 지나치게 많은 경우, 비모수적 검정을 이용하는 것은 좋은 선택이 될 수 있다. 그러나 모수적 검정을 수행하는 데 필요한 가정이 만족되...2025.05.10
-
모수적 추정을 통한 데이터 기반 분포 모형화 1 (Python 코딩)2025.05.131. 모수적 추정 모수적 추정은 데이터를 특정 함수의 파라미터로 모델링하는 방법입니다. 일반적으로 미리 정의된 수학적 모델을 사용하며, 해당 모델의 파라미터를 추정하는 것이 목표입니다. 모수적 방법은 데이터가 적을 때에도 좋은 성능을 보이지만, 데이터의 분포가 모델의 가정과 정확히 일치해야만 정확한 결과를 얻을 수 있습니다. 2. 비모수적 추정 비모수적 추정은 데이터를 특정 함수의 파라미터로 제한하지 않고, 유연한 모델링을 수행합니다. 주어진 데이터에 적합한 모델 형태를 자동으로 선택하며, 복잡한 데이터 패턴을 캡처하는 데 유용합니...2025.05.13
-
방송통신대학교 통계데이터학과)바이오통계학 중간과제물 (30점 만점 A+)2025.01.261. 모집단, 표본, 모수, 통계량 모집단은 우리가 알고 싶은 대상 전체를 의미하며, 표본은 모집단의 일부를 실제로 관측한 것을 말한다. 모수는 모집단 전체의 특성을 나타내는 값이고, 통계량은 표본의 특성을 나타내는 값이다. 이 문제에서 모집된 만 7세 아동 100명은 표본에 해당한다. 2. 히스토그램 그리기 R 프로그래밍을 이용하여 수축기 혈압(SBP)의 분포를 나타내는 히스토그램을 그렸다. 이를 통해 데이터의 분포 특성을 시각적으로 확인할 수 있다. 3. 중앙값 구하기 R 프로그래밍을 이용하여 이 데이터에 포함된 156명 전체의...2025.01.26
-
30점 만점 방통대 데이터마이닝 2024-1학기2025.01.261. 데이터마이닝 방법론 데이터마이닝의 방법은 크게 모수적 모형 접근 방법과 알고리즘 접근 방법으로 나뉜다. 모수적 모형 접근법은 기존 데이터를 기반으로 모수를 추정하는 방법이며, 알고리즘 접근방법은 정해진 알고리즘에 따라 데이터를 학습하는 방법이다. 각각의 장단점이 있으며, 상황에 따라 적절한 방법을 선택해야 한다. 2. 모수적 모형 접근법 모수적 모형 접근법은 단순 선형 회귀분석, 로지스틱 회귀모형 등이 해당된다. 기본 모형 식이 존재하며, 모수를 추정하는 방식으로 결과가 복잡하지 않고 해석이 용이하다. 그러나 데이터가 가정한 ...2025.01.26
-
MCMC를 활용한 베이지안 추론 - 동전 던지기 문제의 확률 추정 (파이썬예제풀이 포함)2025.05.091. MCMC(Markov Chain Monte Carlo) MCMC는 머신러닝과 통계학 분야에서 중요한 역할을 하는 AI(인공지능) 기법 중 하나입니다. MCMC는 복잡한 확률분포를 추정하거나 샘플링하기 위해 사용되며, 특히 베이지안 추론과 관련된 문제에 유용하게 적용됩니다. MCMC는 몬테카를로(Monte Carlo) 방법과 마코프 체인(Markov Chain)을 결합한 알고리즘으로, 마코프 체인을 이용하여 탐색 공간을 효과적으로 탐색하고 샘플링을 수행합니다. 2. 동전 던지기 문제 동전 던지기 문제는 간단하면서도 직관적인 문제...2025.05.09
-
만 7세 남자 아동의 평균 몸무게 추정 및 췌장암 환자 데이터 분석2025.01.261. 모집단, 표본, 모수, 통계량 만 7세 남자 아동 전체는 모집단이고, 여기서 모집된 만 7세 남자 아동 100명은 표본이다. 모집단인 7세 남자 아동 전체에서 뽑은 100명의 표본을 대상으로 계산한 평균 몸무게는 통계량(statistic)을 의미한다. 2. 췌장암 환자 데이터 분석 R을 이용하여 데이터를 읽고 저장하며, 범주형 변수를 factor 형태로 저장하였다. 수축기 혈압(SBP)의 분포를 나타내는 히스토그램을 그렸다. 또한 데이터에 포함된 156명 전체의 수축기 혈압 중앙값과 95% 신뢰구간을 구하였다. 3. 가설검정 ...2025.01.26
-
바이오통계학 중간과제물 (2023, 만점)2025.01.241. 모집단, 표본, 모수, 통계량 만 20세 성인 여성의 평균 신장을 추정하기 위하여 100명의 만 20세 성인 여성을 모집하여 신장을 측정하고 평균을 계산하였다. 만 20세 성인 여성 전체는 모집단이며, 모집된 100명의 여성의 평균 신장은 통계량이다. 만 20세 성인 여성의 평균 신장은 모수이다. 2. 혈액형 분포 R 명령문을 이용하여 성인 30명의 성별, 혈액형, 신장 데이터를 객체 dd에 저장하고, 이를 활용하여 혈액형의 분포를 나타내는 막대그래프를 그렸다. 3. 평균 신장 계산 30명 전체의 평균 신장은 R의 mean()...2025.01.24
