총 30개
-
서울대학교 보건통계학개론 4주차 과제답안2025.05.101. 연속확률변수 연속확률변수는 관측값이 연속형인 확률변수를 의미하며, 연속형이란 관측 가능한 값을 크기순으로 나열했을 때 연속한 두 값 사이에 실수가 존재하지 않는 변수를 의미한다. 예로는 성인 여성의 키, 초등학생의 몸무게, 일일 강수량, 풍속 등이 있다. 2. 연속확률변수의 확률분포함수 연속확률변수의 확률분포함수는 히스토그램에서 각 막대의 위쪽 가로의 중간지점을 연결하고 데이터의 수 n이 아주 크고 계급구간의 너비가 1에 가깝게 된다면 도수다각형은 부드러운 곡선의 형태가 된다. 이렇게 만들어진 도수다각형이 연속확률변수의 확률분...2025.05.10
-
경영통계학_이산확률분포에 대하여 요약하여 정리하시오. 이항분포에 대한 정리, 초기하분포에 대한 정리, 포아송분포에 대한 정리2025.05.121. 이산확률분포 이산확률분포는 이산확률변수가 가지고 있는 확률분포를 말한다. 확률분포는 어떠한 확률변수가 특정값을 가질 수 있는 확률을 나타내며, '이산'이라는 말이 붙는 것은 확률변수가 가질 수 있는 값이 특정 제한된 개수(자연수 부분 집합)로 구성된다는 것을 의미한다. 본고에서는 이항분포, 초기하분포, 포아송분포에 대해 살펴보고자 한다. 2. 이항분포 이항분포는 베르누이 시행 결과를 여러 개 한 뒤에 그 합들을 변수값으로 갖는 확률변수의 분포를 말한다. 이때 이항분포에서 나오는 변수값이 이항확률변수라고 한다. 이항확률변수를 이...2025.05.12
-
경영통계학_이산확률분포에 대해 요약하여 정리하시오.2025.01.211. 이산확률분포의 개념 이산확률분포는 확률변수가 취할 수 있는 값이 유한하거나 셀 수 있을 정도로 무한한 경우를 다루는 분포이다. 이는 연속확률분포와 대조되며, 주로 개수, 횟수, 이진 결과 등을 분석하는 데 사용된다. 이산확률변수는 각 가능한 값에 대해 특정 확률을 할당받으며, 이러한 확률의 합은 항상 1이 된다. 2. 이산확률분포의 종류 이산확률분포에는 베르누이 분포, 이항 분포, 포아송 분포, 기하 분포, 음이항 분포 등이 있다. 각 분포는 특정한 상황에서 유용하게 사용될 수 있다. 3. 베르누이 분포 베르누이 분포는 두 가...2025.01.21
-
[경영통계학 A+] 이산확률분포에 대해 요약하여 정리하시오.2025.01.171. 이산확률분포 확률분포란 확률변수 X가 특정한 값을 가질 확률을 나타내는 분포를 말한다. 이러한 확률분포는 확률변수의 종류에 따라 크게 이산확률분포와 연속확률분포로 나뉜다. 이산확률분포란 이산확률변수에 대응하는 확률분포를 말한다. 즉, 확률변수 x가 취하는 값이 이산집합이어서 유한집합이거나 가산일 때, 이에 대응하는 확률분포를 이산 확률분포라고 한다. 이항분포, 포아송분포, 기하분포, 초기하분포 등이 대표적인 이산확률분포다. 2. 이항분포 이항분포는 연속된 n번의 독립적 시행에서 각 시행이 확률 p를 가질 때의 이산확률 분포이다...2025.01.17
-
푸아송 분포 유도 및 특징2025.01.141. 푸아송 분포 푸아송 분포는 거의 일어나지 않는 사건에 대한 분포로 적절합니다. n = 1000000, p = 0.00001 인 경우 이항분포로 계산하기 어려워 푸아송 분포를 사용할 수 있습니다. 푸아송 분포는 수많은 사건 중 특정한 사건이 발생할 확률이 매우 적은 경우에 사용되며, 예시로 단위 길이당 DNA 가닥의 돌연변이 수, 특정 지역에서 일어나는 교통사고 건수 등이 있습니다. 2. 푸아송 분포의 유도 푸아송 분포는 특정 지역에서 하루에 일어나는 교통사고의 평균 횟수 λ = 5일 때, 교통사고가 하루에 7번 일어날 확률을 ...2025.01.14
-
학점은행제 경영통계학 이산확률분포에 대하여 요약하여 정리하시오. 과제 A+2025.01.141. 이산확률분포 이산확률분포란 이산확률변수에 대응하는 확률분포를 뜻한다. 확률변수 x가 가지는 값이 이산집합이어서 유한집합이거나 가산적인 경우 이에 대응하는 확률분포를 이산 확률분포라고 한다. 이산확률분포에는 베르누이 분포, 이항분포, 초기하분포, 포아송분포 등이 있다. 2. 이항분포 이항분포란 어떤 시행을 하였을 때 사건이 일어날 확률이 p인 경우, n회의 독립시행에서 사건이 일어나는 횟수를 x라하면 확률분포는 P(X = r) = nCrpr(1 - p)n - r(단, r = 0, 1, 2, ···, n)이다. 이러한 분포를 이항...2025.01.14
-
확률변수와 확률분포에 대한 학습2025.01.221. 이산확률분포 이산확률분포는 확률변수에 대한 확률분포로 확률변수의 값의 확률이 어떻게 분포되었는지를 보여주는 분포입니다. 이산확률변수의 확률함수는 두 가지 조건을 만족해야 합니다. 이산확률분포에는 베르누이분포와 이항분포가 있습니다. 2. 이항분포 이항분포는 성공확률 p인 베르누이시행을 n번 반복했을 때 성공횟수 X의 분포를 나타냅니다. 이항분포는 n과 p에 의해 확률구조가 결정되며, 이 두 값이 이항분포의 모수가 됩니다. 이항분포의 특성 중 하나는 성공 확률이 동일하고 서로 독립인 이항 확률변수 합도 이항분포를 따른다는 것입니다...2025.01.22
-
2023년 2학년 1학기 확률의 개념과 응용 출석과제 중간과제 만점 30점2025.01.251. 확률의 역사 확률은 16세기부터 21세기 사이에 다양한 주요 사안들이 있었는데, 16세기에는 확률론의 시작으로 지롤라모 카르다노가 확률론을 체계화하기 시작했고, 17세기에는 파스칼과 페르마가 확률론에 대한 이론을 정립했으며, 베르누이 확률변수 이론이 정립되었다. 18세기에는 베이즈 정리가 등장하면서 확률론이 성숙기에 접어들었고, 19세기에는 라플라스에 의해 확률이 하나의 학문적 체계로 조직화되었다. 20세기에는 콜모고로프가 확률론의 공리적 기초를 확립하면서 확률론이 수학이론으로 자리잡게 되었다. 21세기에는 ICT와 인공지능 ...2025.01.25
-
이산확률분포의 유형과 특징2025.01.041. 이산확률분포 이산확률분포는 확률변수가 정수 값을 가지는 확률분포를 말합니다. 이항분포, 포아송분포, 초기하분포 등이 대표적인 이산확률분포의 유형입니다. 이들 분포는 각각 독립시행, 단위시간 내 사건 발생 횟수, 비복원추출 등의 특징을 가지고 있습니다. 2. 이항분포 이항분포는 n번의 독립적인 베르누이 시행에서 성공 확률이 p인 경우의 확률분포입니다. 시행 횟수가 늘어나면 이항분포가 정규분포에 근사해집니다. 이항분포는 페널티킥 성공률 등 두 가지 결과만 있는 실험에 적용할 수 있습니다. 3. 포아송분포 포아송분포는 단위 시간 또...2025.01.04
-
이산확률분포: 이항분포, 포아송분포, 초기하분포의 특징 및 예시2025.05.091. 이산확률분포 확률분포는 가능한 모든 확률변수와 이것이 일어날 확률을 나타낸 것을 말한다. 이산확률분포는 확률변수 X가 가질 수 있는 값이 유한 집합이거나 가산집합일때 확률변수 X에 대응하는 확률분포이다. 즉, 확률변수 X가 1,2,3,4, … 이나 2,4,6,8,… 등과 같이 하나씩 셀 수 있는 값을 취하는 것을 말한다. 2. 이항분포 이항분포는 연속되는 n번의 독립적 시행에서 각각의 시행의 확률이 p를 가질 때의 분포이며, 이러한 시행을 베르누이 시행이라 말할 수 있다. 이항분포는 시행횟수(n)이 고정되어 있고, 각 시행에서...2025.05.09
