
총 106개
-
기하학의 역사2025.05.051. 고대 기하학 고대 오리엔트에서 시작하여, 초등 기하학은 그리스의 유클리드에 의해 집대성되었고 현재는 이것을 더 발전시켜 해석 기하학·미분 기하학·사영 기하학·위상 기하학 등 다양한 내용·방법을 가졌다. 고대 기하학은 대략 기원전 5000~3000년 사이에 고대 동양 일부 지역에서 공학과 농업 및 상업적인 업무와 종교 의식을 보조하기 위한 실용적인 학문으로 등장하였다. 고대 수학자인 에우클레이데스는 고대 그리스 시대의 수학적 업적을 정리하여 <원론>을 집필하였고, 아르키메데스는 도형의 넓이와 부피의 계산에 탁월한 업적을 남겼다....2025.05.05
-
대학수학에서 배우는 수학, 배우고 싶은 수학2025.01.211. 미적분학 미적분학은 변화율과 누적값을 다루는 수학의 기초 분야로, 연속적인 변화를 다루며 극한, 미분, 적분 개념을 중심으로 한다. 물리학, 공학, 경제학 등 거의 모든 과학 분야에서 광범위하게 사용되며, 건축 분야에서는 구조물의 응력 분석, 열 전달 계산, 곡면 설계 등에 활용된다. 2. 선형대수학 선형대수학은 벡터, 행렬, 선형 변환 등을 연구하는 분야로, 다차원 공간에서의 선형 관계를 다루며 연립방정식 해법에 중점을 둔다. 컴퓨터 그래픽스, 기계 학습, 양자 역학 등에서 핵심적인 역할을 하며, 건축 분야에서는 3D 모델링...2025.01.21
-
[진로탐구활동] 수학 교사가 되는 길-수학 교사가 되려면 어떻게 해야 하는지 자세히 설명한 리포트입니다.2025.04.251. 수학 교사의 역할 수학 선생님은 학생이 현재 배우고 있는 수학을 쉽게 이해할 수 있도록 도와주는 역할을 할 뿐만 아니라 청소년기 학생들에게 가치관을 확립할 수 있도록 도와준다. 중·고등학교에서 학생들에게 수리력과 논리적 사고력을 향상하기 위하여 수학, 실용 수학, 미분과 적분, 확률과 통계, 이산수학 및 관련 과목을 전문으로 교육한다. 2. 수학 교사의 주요 업무 - 학생들의 구체적인 경험에 근거하여 사물의 현상을 수학적으로 해석하고 조직하는 활동, 직관이나 구체적인 조작 활동에 바탕을 둔 통찰 등의 수학적 경험을 통하여 수학...2025.04.25
-
아르키메데스의 수학적 업적2025.01.201. 원주율 계산 아르키메데스는 실진법을 이용하여 원주율 π의 근삿값을 최초로 구했다. 그는 원에 내접하는 정육각형과 외접하는 정육각형의 둘레 길이를 이용하여 π의 값이 3과 3.47 사이에 있다는 것을 밝혀냈다. 이후 변의 개수를 늘려가며 더 정확한 값을 구했고, 최종적으로 π의 값이 3.1416임을 증명했다. 이는 당시 그리스에서 알려진 가장 정확한 원주율 값이었다. 2. 곡선 및 곡면 도형의 넓이와 부피 계산 아르키메데스는 실진법을 사용하여 곡선이나 곡면으로 둘러싸인 도형의 대략적인 넓이와 부피를 구했다. 도형을 같은 두께의 ...2025.01.20
-
기하 정사영 일상생활 창의 리포트2025.01.281. 정사영을 활용한 키 측정 정사영을 활용하여 기계 없이도 키를 측정할 수 있는 방법을 소개했습니다. 입체인 사람의 몸을 벽에 수직으로 부착했다고 가정하고, 그렇게 했을 때 생기는 수직 부분의 길이를 계산하면 그 사람의 키를 측정할 수 있습니다. 이는 3차원 입체도형을 2차원 정사영으로 변환하는 원리를 활용한 것입니다. 2. 정사영을 활용한 시간 측정 조선 시대 과학자 장영실이 개발한 앙부일구에서는 정사영의 원리를 활용하여 시간을 측정할 수 있었습니다. 동쪽에서 떠서 서쪽으로 질 때까지 하루의 햇빛 고도량을 바탕으로 이를 정사영시...2025.01.28
-
기하의 원리를 이용한 공학 ( 기하 세특)2025.01.201. 컴퓨터 그래픽스 및 3D 모델링 3D 모델링과 렌더링은 기하학적 개념에 기반합니다. 물체의 모양, 크기, 위치 등을 수학적으로 표현하는 데 기하학이 사용됩니다. 이는 영화, 게임, 가상 현실(VR), 증강 현실(AR), 건축 시각화 등에 응용됩니다. 기하학의 원리로는 메시(mesh) 생성, 변환 행렬, 광원 및 음영 처리 등이 있습니다. 2. 기계 설계 및 CAD (Computer-Aided Design) CAD 소프트웨어는 기하학적 도형을 사용하여 기계 부품, 제품, 건축 구조 등을 설계합니다. 기하학은 제품의 형태, 조립 ...2025.01.20
-
[기하광학 실험 A+] 반사와 굴절 실험2025.01.191. 기하광학의 기본법칙 기하광학에서 전제되는 3가지 기본법칙이 있다. 1) 입사파, 반사파, 투과파의 파동벡터는 모두 같은 평면에 있으며, 이 평면을 입사면이라 한다. 2) 반사법칙: 입사각과 반사각은 같다. 2. 반사율 및 투과율 측정 (공기 → 유리) 1. 레이저, 편광자, 극좌표판, 반구형 렌즈(유리), 광검출기를 배치한다. 2. 공기에서 렌즈로 빛이 입사하도록 반구형 렌즈를 배치한다. 3. 편광자의 축을 조절하여 s편광의 빛이 렌즈로 입사되도록 한다. 4. 광검출기와 멀티미터로 편광자를 통과한 레이저 광의 세기를 측정한다....2025.01.19
-
기하 보고서 (leniscate, 두 초점사이 거리의 곱이 일정할 때)2025.01.151. 렘니스케이트 곡선 책 '원뿔에서 태어난 이차곡선'을 읽으며 이차곡선의 유래 과정에 대해 잘 이해할 수 있었다. 책을 읽으며 갖게된 초점간의 관계에 대한 궁금증을 바탕으로 두 초점사이의 거리의 곱이 일정할 때 그려지는 자취의 방정식이 무한대꼴의 자취를 가진다는 것을 알 수 있었으며 이를 극좌표계를 통해 나타내는 것이 유용함을 알게되었다. 또한 렘니스케이트 곡선이 자율주행에서의 센서나 오일펌프의 설치에 적용되는 것을 알 수 있었다. 1. 렘니스케이트 곡선 렘니스케이트 곡선은 수학 및 물리학 분야에서 매우 중요한 개념입니다. 이 곡...2025.01.15
-
무기화학실험보고서-Co(III) Octahedral complexes [Co(NH3)5Cl]Cl2 합성2025.01.181. 배위(coordination, configuration) 배위(coordination)는 원자, 분자 또는 이온이 한 원자(중성자 또는 이온)를 기하학적 배치법으로 둘러싸는 구조를 의미합니다. 결정 내의 한 원자에 가장 근접한다는 뜻으로도 쓰이지만 보통은 비교적 강한 화학결합이 형성되는 경우를 가리킵니다. 배위의 방향은 배위수에 따라 각기 독자적인 대칭성을 가질 때가 많습니다. 한편 configuration은 비대칭 원자에 결합하는 원자 또는 원자단이 그 비대칭원자의 주위에서 취하는 공간적 배열을 의미합니다. 2. 착물(com...2025.01.18
-
수학동아리 운영계획서2025.05.041. 프랙털 구조 프랙털은 자기 유사성을 가지는 기하학적 구조로, 일상생활에서 다양한 형태로 나타납니다. 프랙털 구조는 자연계에서 발견되는 나뭇가지, 번개, 강줄기 등에서 찾아볼 수 있으며, 이를 이해하면 자연 현상을 보다 깊이 이해할 수 있습니다. 2. 기초감염재생산수 R0 기초감염재생산수 R0는 감염병 확산을 예측하는 중요한 지표입니다. R0가 1보다 크면 감염병이 확산되고, 1보다 작으면 감염병이 줄어듭니다. 코로나19 팬데믹 상황에서 R0를 이해하는 것은 감염병 예방과 대응에 필수적입니다. 3. 경우의 수 경우의 수는 수학의...2025.05.04