
총 87개
-
AI, 머신러닝, 딥러닝의 관계2025.01.151. 인공지능(AI) 인공지능(AI)은 인간의 인지 기능을 모방하여 만들어진 기술로, 학습, 추론, 문제 해결과 같은 지능적 행동을 컴퓨터가 수행할 수 있게 합니다. AI는 처음에는 간단한 규칙과 로직을 기반으로 작동하는 시스템에서 출발했지만, 시간이 흐르며 머신러닝과 딥러닝과 같은 고급 기술로 발전했습니다. AI 기술은 지식 표현, 추론, 계획, 학습, 자연어 처리, 지각 등 다양한 기능을 통해 인간의 능력을 확장하고 산업 혁신을 촉진하고 있습니다. 2. 머신러닝 머신러닝은 데이터로부터 학습하여 패턴을 인식하고 예측을 수행하는 A...2025.01.15
-
2024 방송통신대 머신러닝 출석수업 만점 과제물2025.01.261. k-최근접 이웃 알고리즘 k 값은 k-최근접 이웃 알고리즘에서 최근접 이웃 수를 나타낸다. k 값이 작을수록 모델이 훈련 데이터에 민감해져서 과적합 문제가 발생할 수 있다. 반대로 k 값이 지나치게 크면 너무 많은 이웃을 고려하게 되어 모델이 단순화되어 데이터의 세부적인 패턴을 잘 잡지 못하여 성능이 떨어지게 된다. 2. 거리 계산 방식 기존 knn에 적용된 거리 계산식은 유클리드 거리 방식에서 맨하탄 거리 계산 방식으로 변경하였다. 유클리드 거리는 두 점 간의 직선적 거리를 측정하고, 맨하탄 거리는 각 차원에서 거리를 단순히...2025.01.26
-
데이터 사이언티스트 - 21세기 최고의 직업2025.01.191. 데이터 사이언티스트의 정의와 필요성 21세기 들어 정보와 데이터의 중요성이 급격히 증가했으며, 기업과 정부, 연구기관 등 다양한 분야에서 데이터의 수집과 분석을 통해 새로운 가치를 창출하고 있다. 이 과정에서 핵심적인 역할을 하는 직업이 바로 데이터 사이언티스트이다. 데이터 사이언티스트는 통계학자와 데이터 엔지니어와 구분되는 독특한 역할을 한다. 2. 데이터 사이언티스트의 매력과 인기도 데이터 사이언티스트 직업의 매력은 높은 수요와 보상, 다양한 산업에서의 활용, 기술 발전에 따른 지속적인 학습 기회, 사회적 가치 창출 등 다...2025.01.19
-
의사결정 트리(Decision Trees)2025.05.101. 의사결정 트리(Decision Trees) 의사결정 트리(Decision Trees)는 머신러닝에서 가장 널리 사용되는 분류(classification) 및 회귀(regression) 알고리즘 중 하나입니다. 이는 데이터의 특징을 기반으로 한 의사 결정 규칙의 계층적 트리 모델을 나타냅니다. 의사결정 트리는 간단하고 해석하기 쉬운 모델로 알려져 있으며, 데이터의 특징을 직관적으로 이해할 수 있는 장점이 있습니다. 2. 의사결정 트리의 구조 의사결정 트리는 다음과 같은 구조로 이루어져 있습니다: 노드(Nodes), 가지(Edge...2025.05.10
-
딥러닝의 통계적 이해 출석 수업 과제물 (2023, 만점)2025.01.241. Teachable Machine을 이용한 머신러닝 모델 구축 Teachable Machine을 활용하여 이미지를 학습시켰다. 사용한 이미지는 구글 이미지에서 '귀멸의 칼날'이라는 애니메이션의 주인공 4명의 다른 사진들을 각각 10장씩 찾은 뒤 머신러닝의 입력값으로 사용하였다. 본 머신러닝으로 실제로 가지고 있는 피규어 사진을 찍어 이 사진을 입력하면 애니메이션 캐릭터를 정확하게 분류할 수 있는지 파악하고자 하였다. 다양한 하이퍼파라미터 조정을 통해 최적의 정확도를 얻고자 하였으나, 설정에 따른 결과 비교를 대량으로 진행하여 거...2025.01.24
-
건국대학교 오픈소스SW프로젝트 1 머신러닝으로 해결할 수 있는 문제, 머신러닝의 세가지 요소2025.01.191. 머신러닝을 적용할 수 있는 문제 사용자의 음식 기호에 맞는 한식 추천 문제를 해결하기 위해 비지도학습의 분류를 사용할 수 있으며, 서포트벡터 머신 모델을 고려하고 있다. 또한 사용자에게 세 가지 정도의 한식을 추천하는 것을 목표로 하고 있다. 2. 머신러닝의 3가지 요소 머신러닝의 핵심 요소는 Task, Experience, Performance measure이다. Task는 머신러닝을 통해 해결하려는 문제, Experience는 실제 데이터를 바탕으로 한 학습, Performance measure는 학습을 바탕으로 생성된 모...2025.01.19
-
머신러닝 효과검증2025.05.101. 머신러닝 효과검증 머신러닝 과제의 실제 효과를 보여주기 위해 다음과 같은 방법들을 고려할 수 있습니다: 정량적인 성능 개선, 시간과 비용 절감, 예측 능력 개선, 인사이트 제공, 실제 시스템 통합. 이러한 방법들을 통해 머신러닝 과제의 실제 효과를 증명할 수 있습니다. 과제의 목적과 환경에 따라 적절한 방식으로 결과를 제시하는 것이 중요합니다. 2. 제조 수율영향성 분석 수율 영향성을 분석하는 머신러닝 과제를 위한 분석 툴을 제작하기 위해 다음과 같은 절차를 따를 수 있습니다: 데이터 수집, 데이터 전처리, 특성 선택 및 추출...2025.05.10
-
방송통신대학교(방통대) 정보통신망 2023년 중간 과제물 만점 리포트2025.01.241. 디지털 배지 디지털 배지는 기존의 물리적인 증명서와 달리 개인정보 노출을 최소화하고, 유효성 검증이 간단하며, 분실 위험이 없고, 추가 정보 제공이 용이하다는 장점이 있다. 디지털 배지는 블록체인 기술과 결합하여 변조가 어렵고 발급 기관이 사라져도 검증이 가능하며, 머신러닝 기술과 결합하여 사용자에게 맞춤형 교육 과정을 추천해줄 수 있다. 디지털 배지의 도입을 위해서는 표준화와 신뢰할 수 있는 통합 데이터베이스 구축이 선행되어야 한다. 2. 개인정보 보호 기존의 물리적인 증명서는 개인정보를 과도하게 포함하고 있어 증명서를 제출...2025.01.24
-
통계학과 머신러닝에서의 회귀 분석 목적 비교2025.04.271. 통계학에서의 회귀 분석 통계학에서의 회귀 분석은 여러 변수 사이의 경향성을 분석하는 방법으로, 한 변수의 값이 다른 변수의 값을 설명할 수 있도록 두 변수의 관계를 수식으로 표현하고 데이터로부터 추정하는 분석을 의미한다. 단순 선형 회귀 분석, 다중 선형 회귀 분석, 비선형 회귀 분석 등 다양한 방법이 있다. 2. 머신 러닝에서의 회귀 분석 머신 러닝은 인공지능의 연구 분야 중 하나로, 인간의 학습 능력과 같은 기능을 컴퓨터에서 실현하고자 하는 기술이다. 머신 러닝에서의 회귀 분석은 입력 데이터를 기반으로 예측이나 결정을 도출...2025.04.27
-
혁신적인 AI 기술을 활용한 의료 진단2025.05.031. 세포 수준의 의료 진단 기술 세포 수준의 의료 진단을 위해서는 바이오마커를 활용하는 기술이 필요하다. 이는 세포와 관련된 유전자 및 단백질 등의 정보를 수집하고 해석함으로써 세포의 상태를 파악할 수 있는 기술이다. 2. AI 기술을 활용한 세포 수준 진단 기술 개발 AI 기술을 활용하여 바이오마커 정보를 더욱 정확하게 분석할 수 있는 세포 수준 진단 기술을 개발하는 것이 이 연구의 목표이다. 이를 위해, 다양한 머신 러닝 알고리즘을 활용한 세포 수준의 데이터 분석 방법을 연구할 것이다. 3. 세포 수준 진단 기술의 장단점 및 ...2025.05.03