총 87개
-
스마트폰을 이용한 음식물 인식 및 칼로리 분석 애플리케이션 개발2025.01.231. 패턴인식 시스템의 구성요소와 처리 절차 패턴인식 시스템은 데이터로부터 유의미한 패턴을 인식하고 분류하는 기술로, 데이터 수집, 전처리, 특징 추출, 분류기 설계, 결과 해석의 다섯 가지 주요 구성 요소로 이루어진다. 이러한 구성 요소와 처리 절차는 음식물 인식 및 칼로리 분석 애플리케이션 개발에 필수적인 기반을 제공한다. 2. 음식물 인식 애플리케이션 개발 시 고려사항 음식물 인식 및 칼로리 분석 애플리케이션 개발 시 고려해야 할 사항으로는 높은 인식 정확도, 사용자 친화적인 인터페이스, 데이터 보안과 프라이버시, 다양한 음식...2025.01.23
-
[A+] 데이터 과학, 데이터 애널리틱스, 데이터 분석, 인공지능, 머신러닝, 딥러닝 단어 설명 (무역학과 글로벌비즈니스애널리틱스)2025.01.241. 데이터 과학 데이터 과학은 방대한 데이터를 수집, 처리, 분석하여 의미 있는 정보를 추출하는 과정을 연구하는 학문입니다. 데이터 과학은 다양한 통계적 기법과 머신러닝 알고리즘을 사용하여 데이터를 기반으로 유의미한 통찰을 도출하고, 이를 통해 비즈니스 문제를 해결합니다. 데이터 과학은 데이터 엔지니어링, 데이터 분석, 모델링, 시각화, 그리고 결과 해석의 과정을 포함하여 기업이 데이터를 통해 실질적인 가치를 얻을 수 있도록 돕습니다. 2. 데이터 애널리틱스 데이터 애널리틱스는 데이터를 기반으로 특정 문제를 분석하고, 그에 대한 ...2025.01.24
-
파이썬을 이용한 불법 사이트 탐지 및 차단2025.04.281. 불법 사이트 탐지 이 프로젝트는 파이썬을 사용하여 불법 사이트를 탐지하고 차단하는 기능을 제공합니다. 주요 기능으로는 구글 검색을 통해 불법 사이트 URL을 추출하고, 이를 hosts 파일에 차단하는 것입니다. 또한 머신러닝 기술을 활용하여 URL의 악성 여부를 판단하고, meta 태그의 키워드 필터링을 통해 유해 사이트를 탐지하는 기능을 포함하고 있습니다. 2. 구글 검색 및 URL 추출 이 프로젝트는 구글 검색을 통해 불법 사이트 URL을 추출하는 기능을 제공합니다. 특정 키워드로 구글 검색을 수행하고, 검색 결과에서 불법...2025.04.28
-
정보통신망4C 에지 컴퓨팅 Edge Computing 조사설명하고 에지 컴퓨팅을 위해 활용될 수 있는 정보통신기술에 관하여 서술하시오2025.01.251. 에지 컴퓨팅 정의 및 필요성 에지 컴퓨팅(Edge Computing)은 중앙 데이터 처리 시스템에서 데이터를 처리하는 대신, 데이터를 생성하는 위치 또는 가까운 위치에서 데이터 처리 및 분석을 수행하는 분산 컴퓨팅 기술입니다. 에지 컴퓨팅은 대역폭 절감, 데이터 프라이버시 보호, IoT 기기와의 통합, 네트워크 지연 감소 등의 장점이 있어 실시간 응용 프로그램, 산업 자동화, 스마트 시티 등 다양한 분야에서 필요성이 높아지고 있습니다. 2. 에지 컴퓨팅 장점과 문제점 에지 컴퓨팅의 주요 장점은 낮은 대기 시간, 대역폭 절감, ...2025.01.25
-
인공지능의 개념과 기술 그리고 활용사례에 대해 조사하시오2025.04.301. 인공지능의 개념 인공지능이란 인간의 지능을 갖추어 인간의 학습 능력을 바탕으로 추론, 지각, 이해를 수행하는 컴퓨터 프로그램 기술을 의미한다. 약인공지능과 강인공지능의 두 가지 형태로 분류되며, 인간의 지시 여부에 따라 구분된다. 약인공지능은 인간이 요구하는 특정 분양의 일을 인간의 지시에 따라 수행하는 인공지능이며, 강인공지능은 인간의 사고와 정보처리 과정을 구현하기 위한 것으로 현재로서는 요원한 영역이다. 2. 머신러닝과 딥러닝 기계학습 또는 머신러닝은 인공지능을 구현하는 방법의 하나로, 알고리즘을 통해 데이터를 분석하고 ...2025.04.30
-
컴퓨터공학과 프로젝트, 보고서 주제 추천2025.01.101. 머신러닝/인공지능 프로젝트 이미지 분류, 자연어 처리, 음성 인식 등과 같은 머신러닝 및 딥러닝 알고리즘을 활용한 프로젝트를 수행해볼 수 있다. 예를 들어, 손으로 쓴 숫자 인식, 감정 분석, 스팸 필터링 등의 주제를 다룰 수 있다. 2. 웹 개발 프로젝트 웹 애플리케이션 개발을 통해 프론트엔드와 백엔드 기술을 익힐 수 있다. 예를 들어, 블로그 플랫폼, 전자 상거래 웹사이트, 온라인 게임 등을 만들어 볼 수 있다. 3. 모바일 앱 개발 안드로이드나 iOS 플랫폼에서 모바일 앱을 개발하는 프로젝트를 수행해볼 수 있다. 예를 들...2025.01.10
-
데이터 사이언티스트 인터뷰 준비2025.01.201. 데이터 전처리 데이터셋에 존재할 수 있는 결측값과 이상치를 처리하는 것이 중요하다. 결측값은 평균, 중앙값 등으로 대체하거나 제거할 수 있으며, 이상치는 상자 그림이나 Z-점수를 사용해 식별하고 제거하거나 대체할 수 있다. 또한 데이터의 스케일을 맞추기 위해 정규화 작업이 필요하다. 2. 머신러닝 모델 과적합 방지 과적합을 방지하기 위해 교차 검증, 정규화 기법(L1, L2), 조기 종료 등의 방법을 사용할 수 있다. 교차 검증을 통해 데이터를 최대한 활용하고 모델의 일반화 성능을 평가할 수 있으며, 정규화 기법은 모델의 복잡...2025.01.20
-
AI의 등장과 영향, 산업 분야별 적용 사례 및 전망2025.05.161. 새로운 산업 혁명, AI의 시작 ChatGPT는 인간과 유사한 텍스트를 생성하고 광범위한 질문에 높은 정확도로 응답할 수 있다는 점에서 호평을 받고 있습니다. 의료, 금융, 고객 서비스를 포함한 많은 산업은 다양한 프로세스를 자동화할 수 있고 개선할 수 있는 잠재력에 의해 ChatGPT를 채택하기 시작했습니다. 2. 생성형 AI 생성형 AI란 머신러닝 알고리즘을 통해 학습 데이터를 기반으로 새로운 콘텐츠를 만드는 기술입니다. 이 생성형 AI가 바로 ChatGPT입니다. 머신러닝은 컴퓨터가 주어진 데이터로부터 자체 학습을 하여 ...2025.05.16
-
머신 러닝 학습을 위한 데이터 증량하기2025.05.081. 데이터 증강 데이터 증강(Data Augmentation)은 현대 머신러닝과 딥러닝 분야에서 핵심 개념이 되었습니다. 데이터의 양과 질은 모델의 성능과 일반화 능력에 큰 영향을 미치지만, 현실적인 제약으로 인해 충분한 양의 고품질 데이터를 수집하기 어려운 문제를 해결하기 위해 데이터 증강이 등장하였습니다. 데이터 증강은 기존의 데이터를 변형하여 새로운 데이터를 생성하는 과정으로, 모델의 학습과 예측 능력을 향상시킬 수 있습니다. 2. 데이터 증강 기법 다양한 데이터 증강 기법이 개발되어 있으며, 이를 통해 다양한 유형의 데이터...2025.05.08
-
마이크로 모빌리티 서비스 제공 기업의 수요 예측 및 전략적 배치2025.01.171. 수요 예측 방법론 수요 예측을 위해 시계열 분석과 머신 러닝 알고리즘을 활용할 수 있다. 시계열 분석은 과거 패턴을 바탕으로 미래를 예측하는 방법이며, 머신 러닝은 복잡한 데이터에서 패턴을 학습하여 예측하는 방법이다. 각각의 장단점이 있으므로, 상황에 따라 적절한 방법을 선택해야 한다. 2. 필요한 데이터 유형 및 수집 방법 수요 예측을 위해 필요한 데이터에는 이용 기록 데이터, 고객 프로필 데이터, 외부 환경 데이터가 있다. 이용 기록 데이터는 서비스 애플리케이션에서, 고객 프로필 데이터는 데이터베이스에서, 외부 환경 데이터...2025.01.17
