
총 110개
-
[보고서]딥러닝 모델링 성능 향상 기법2025.01.241. 손실함수 신경망의 성능을 개선하기 위한 방법 중 하나로 손실함수에 대해 다루었습니다. 연속형 모델의 경우 평균 제곱 오차법(MSE)을, 이산형 모델의 경우 이진 교차 엔트로피(BCE) 손실을 사용하는 것이 적합하다고 설명하고 있습니다. Pytorch에서는 nn.MSELoss()와 nn.BCELoss()를 사용할 수 있습니다. 2. 활성화 함수 신경망 훈련 시 기울기 소실 문제를 해결하기 위해 다양한 활성화 함수에 대해 설명하고 있습니다. 전통적인 시그모이드 함수의 문제점을 지적하고, ReLU와 Leaky ReLU 함수를 소개하...2025.01.24
-
딥러닝을 이용한 COVID-19 흉부 X선 영상 자동 탐지2025.01.031. COVID-19 진단 이 연구에서는 COVID-19 환자를 식별하기 위해 흉부 X선 영상을 사용했습니다. DenseNet169 심층 신경망을 사용하여 이미지 특징을 추출하고 XGBoost 알고리즘을 통해 분류를 수행했습니다. 제안된 방법은 기존 방법보다 더 정확하고 빠르며 허용 가능한 성능을 보였습니다. 이는 의료 영상 분석과 방사선학 분야에서 딥러닝의 발전을 보여줍니다. 2. XGBoost 알고리즘 XGBoost는 2016년 Chen & Guestrin이 제안한 트리 부스팅 기반의 효율적이고 확장 가능한 알고리즘입니다. 여러...2025.01.03
-
AI, 머신러닝, 딥러닝의 관계2025.01.151. 인공지능(AI) 인공지능(AI)은 인간의 인지 기능을 모방하여 만들어진 기술로, 학습, 추론, 문제 해결과 같은 지능적 행동을 컴퓨터가 수행할 수 있게 합니다. AI는 처음에는 간단한 규칙과 로직을 기반으로 작동하는 시스템에서 출발했지만, 시간이 흐르며 머신러닝과 딥러닝과 같은 고급 기술로 발전했습니다. AI 기술은 지식 표현, 추론, 계획, 학습, 자연어 처리, 지각 등 다양한 기능을 통해 인간의 능력을 확장하고 산업 혁신을 촉진하고 있습니다. 2. 머신러닝 머신러닝은 데이터로부터 학습하여 패턴을 인식하고 예측을 수행하는 A...2025.01.15
-
CNN을 이용한 이미지 분류-일반 농산물과 GMO의 구분2025.01.281. GMO 농산물 구분 연구에서는 CNN(Convolutional Neural Network)을 이용하여 일반 농산물과 GMO 농산물을 구분하는 방법을 제안하고 있습니다. 연구자는 샤인머스캣 잎과 포도 잎의 이미지를 수집하여 CNN 모델을 학습시켰고, 이를 통해 약 68%의 정확도로 GMO와 일반 농산물을 구분할 수 있었습니다. 이를 통해 소비자들이 GMO 식품 여부를 쉽게 확인할 수 있도록 하고자 하였습니다. 2. 딥러닝을 이용한 이미지 분류 연구에서는 딥러닝 기술 중 하나인 CNN을 활용하여 이미지 분류 문제를 해결하고자 하였...2025.01.28
-
R-CNN 영상 이미지 인식을 이용한 차량간 거리 추정2025.05.091. R-CNN 딥러닝 기법 R-CNN은 object detection 분야에서 널리 사용되는 기법으로, 이미지 내 물체를 인식하고 분류하는 과정을 거치는 방식이다. R-CNN, Fast R-CNN, Faster R-CNN 등이 대표적인 R-CNN 기법이다. R-CNN은 region proposal, CNN 입력, SVM 분류, 바운딩 박스 보정 등의 단계를 거치며, Fast R-CNN과 Faster R-CNN은 이러한 단계를 개선하여 성능을 향상시켰다. 2. 차량 간 거리 추정 본 과제에서는 R-CNN을 이용하여 영상 이미지에서 ...2025.05.09
-
R-CNN 영상 이미지 인식을 이용한 차량간 거리 추정 및 충돌방지2025.05.091. 객체 인식 (Object detection) 이미지에서 객체를 찾고 분류하는 프로세스. MATLAB 딥러닝 기법 중 'R-CNN Object Detector'를 이용하여 영상 이미지 인식 방법을 사용한다. 2. R-CNN: Regions with Convolutional Neural Networks R-CNN 프로세스는 Windows 10, MATLAB 2018b, NVIDIA CUDA Tool kit v10.0, NVIDIA GeForce GTX 750 Ti 개발환경에서 진행되었다. 3. 딥러닝 학습 과정 imageDatas...2025.05.09
-
[연세대학교] 석사 디펜스 발표자료 (Deep Learning 분야)2025.01.151. 차량 주행 음질 예측 이 연구에서는 딥러닝 기술을 활용하여 차량 주행 음질의 기계적 및 감성적 특성을 예측하는 방법을 제안하였습니다. 기계적 특성으로는 엔진 실린더 수를, 감성적 특성으로는 '럭셔리', '스포티', '파워풀'을 고려하였습니다. 분류 모델과 회귀 모델을 통해 이러한 특성들을 높은 정확도로 예측할 수 있었습니다. 특히 적은 데이터 환경에서도 효과적으로 작동할 수 있도록 데이터 증강 및 베이지안 신경망 등의 기법을 활용하였습니다. 1. 차량 주행 음질 예측 차량 주행 음질 예측은 차량 내부 음향 환경을 개선하고 운전...2025.01.15
-
인공지능콘텐츠아트: 예술의 기술선도력, 뇌과학과의 연관성, 인공지능 저작권 현황2025.04.281. 예술의 기술선도력과 인공지능 설계 예술이 기술과 만나면서 기술 선도력으로 새로운 작품들을 만들어내고 있다. '오늘의 관람객' 코너는 관람객의 얼굴을 인공지능으로 재탄생시키는 작품이며, <A Synthetic Song Beyond the Sea>는 인간의 음악과 고래의 음성을 결합한 작품, <나의 기계 엄마 2>는 기계가 감정을 학습하는 작품 등 예술의 상상력과 인공지능 기술이 결합된 사례들을 설명하고 있다. 2. 뇌과학 연구성과와 인공지능의 연관성 뇌과학 기술과 인공지능이 결합하여 딥러닝 기술과 분석 기법이 발전하고 있다. 실...2025.04.28
-
경영정보시스템과 인공지능(AI) 기술의 발전 및 응용2025.01.241. 약한 인공지능과 강한 인공지능 인공지능은 수행 능력과 인지 수준에 따라 약한 인공지능(Narrow AI)과 강한 인공지능(General AI)으로 구분됩니다. 약한 인공지능은 특정 과제에 특화된 지능으로, 인간의 뇌와 같은 종합적 사고를 하진 않지만 특정 목적을 달성하기 위해 최적화된 지능입니다. 반면 강한 인공지능은 인간과 비슷한 수준의 종합적인 사고와 문제 해결 능력을 가진 지능을 목표로 합니다. 2. 기계학습의 개념과 특징 기계학습(Machine Learning)은 인공지능의 한 분야로, 컴퓨터가 데이터를 기반으로 스스로...2025.01.24
-
인공지능의 역사와 현 수준2025.05.011. 인공지능의 역사 인공지능(AI)의 역사는 1940년대부터 시작되었으며, 주요 이정표로는 앨런 튜링의 튜링 테스트 제안, 1950-60년대의 초기 AI 프로그램 개발, 1970-80년대의 전문가 시스템 개발, 1980-90년대의 신경망 및 기계 학습 알고리즘 개발, 2000년대의 딥러닝 알고리즘 개발 등이 있다. 최근 몇 년 동안 AI는 자율주행 차량, 로봇 공학, 가상 비서, 개인화된 의학 등 다양한 분야에서 빠르게 발전하고 있다. 2. 인공지능의 현 수준 인공지능은 자연어 이해, 이미지 인식, 의사결정 등 인간의 지능이 필요...2025.05.01