
총 25개
-
빅 데이터의 의미와 정보기술2025.04.251. 빅 데이터의 의미 빅 데이터는 데이터의 양(Volume), 데이터 생성 속도(Velocity), 형태의 다양성(Variety)이라는 3가지 특성을 가지고 있다. 이러한 빅 데이터는 개인, 단체, 기업, 국가 등에 중요한 자산이 되며 미래 경쟁력을 좌우하는 중요한 자원으로 활용될 것이다. 2. 빅 데이터 분석 기술 빅 데이터 분석 기술에는 기계학습, 데이터마이닝 등이 있다. 기계학습은 컴퓨터가 스스로 학습하여 새로운 규칙을 형성하는 기술이며, 데이터마이닝은 광대한 데이터베이스에서 가치 있는 정보를 찾아내는 기술이다. 이러한 기술...2025.04.25
-
2023년 2학기 빅데이터의이해와활용 출석수업 중간과제 리포트 30점 만점2025.01.251. 데이터과학 데이터과학은 수학, 통계학, 코딩 기술과 해당 분야의 전문지식이 종합된 분야로, 정형 및 비정형 데이터로부터 지식과 인사이트를 추출하는 과정에서 과학적 방법론, 프로세스, 알고리즘, 시스템을 동원하는 융합 분야이다. 데이터과학자는 이러한 일련의 과정을 수행하는 전문가로, 각 해당분야 전문지식을 바탕으로 데이터를 수집, 저장, 가공하고 유의미한 데이터를 결합/분석하여 새로운 가치를 창출한다. 2. 빅데이터 빅데이터는 규모(volume), 다양성(variety), 속도(velocity)의 3V 속성을 가지며, 여기에 정...2025.01.25
-
비즈니스 애널리틱스란 무엇인지 설명2025.01.261. 비즈니스 애널리틱스 비즈니스 애널리틱스는 데이터를 기반으로 혁신을 추구하는 기업들의 성공 사례를 보여준다. 아마존과 넷플릭스는 고객 데이터를 분석하여 개인화된 추천 서비스를 제공하고, 새로운 콘텐츠 개발에 활용하는 등 비즈니스 애널리틱스를 효과적으로 활용하고 있다. 비즈니스 애널리틱스를 도입하기 위해서는 구체적인 목표 설정, 최신 기술 도입, 지속적인 데이터 분석 및 성과 평가가 필요하다. 2. 데이터 과학 데이터 과학은 데이터를 바탕으로 새로운 인사이트를 발견하는 융합적인 학문이다. 데이터 과학자는 컴퓨터 공학, 통계학, 수...2025.01.26
-
선형회귀(Linear Regression)는 통계인가 머신 러닝인가?2025.05.081. 선형회귀 선형 회귀는 연속 값을 예측하는 데 사용되는 통계 방법입니다. 선형 회귀 모델은 두 변수 간의 관계를 설명하는 선형 방정식을 찾는 통계적 방법입니다. 선형 회귀 모델은 통계, 공학, 마케팅, 금융, 제조를 포함한 다양한 분야에서 사용됩니다. 선형 회귀는 데이터를 설명하고 미래를 예측하는 데 사용할 수 있는 가장 널리 사용되는 방법입니다. 2. 통계와 머신러닝 머신러닝의 등장으로 선형회귀는 주로 '지도 학습' 문제에서 사용됩니다. 선형회귀는 입력 변수와 출력 변수 사이의 선형적인 관계를 모델링하여 새로운 입력에 대한 출...2025.05.08
-
데이터과학과 지원 맞춤형 세특 기재 예시2025.01.051. 진로활동 특기사항 진로 지도의 날 행사에 참여하여 과학 박물관에서 자동차의 발전 과정을 확인하고 과학 공식의 실제 적용을 경험하였으며, AI 관련 학과를 체험하면서 로봇공학과 AI 분야에 대한 관심과 이해가 높아졌음을 발표함. 또한 진로 관련 뉴스와 독서 활동을 통해 인공지능과 기술 발전에 대한 인식 전환의 필요성을 깨달았고, 진로 탐색 활동으로 공학 분야의 다양한 학과와 직업군을 탐색하여 적합한 진로를 설계하고자 노력함. 2. 자율활동 특기사항 교내 축제 합창 준비, TED 발표, 학급 카페 운영 등 다양한 자율활동에 적극적...2025.01.05
-
글로벌비즈니스애널리틱스1공통 비즈니스 애널리틱스란 데이터 과학 데이터 애널리틱스 데이터 분석 인공지능 머신러닝 딥러닝이 무엇인지 설명하시오2025.01.261. 비즈니스 애널리틱스 비즈니스 애널리틱스(Business Analytics)는 데이터를 기반으로 비즈니스 의사 결정을 지원하는 과정입니다. 기업의 경영활동의 효율성을 제고하기 위해 지원되는 비즈니스 도구로서, 과거 뿐만 아니라 현재 실시간으로 발생하는 데이터에 대하여 연속적이고 반복적인 분석을 통해 미래를 예측하는 통찰력을 제공하는데 활용 됩니다. 주로 데이터를 수집하고 분석하여 중요한 통찰력을 도출하고, 이를 통해 비즈니스 성과를 향상시키는 데 중점을 둡니다. 2. 데이터 과학 데이터 과학(data science)이란, 데이터...2025.01.26
-
데이터과학개론 2024년 2학기 방송통신대 중간과제물2025.01.261. 범주형 데이터와 수치형 데이터의 의미 비교 범주형 데이터는 관측치 간에 순서가 없거나 순서가 있어도 수치적으로 비교가 불가능한 데이터이다. 반면 수치형 데이터는 명확한 수치적 크기를 기반으로 하는 데이터로, 수치 간의 명확한 구분과 직접적인 비교가 가능하다. 범주형 데이터는 명목형과 순서형으로, 수치형 데이터는 이산형과 연속형으로 나뉜다. 2. 데이터 주도권을 지니기 위한 소양 데이터 주도권을 지니기 위해서는 이해력, 인문학적 소양, 통찰력, 윤리의식, 유연성 등 다양한 소양이 필요하다. 이 중에서 특히 통찰력과 윤리의식이 중...2025.01.26
-
비즈니스 애널리틱스 관련 용어 설명2025.01.261. 데이터 과학 데이터 과학(Data Science)은 데이터를 통해 새로운 인사이트를 발견하고, 복잡한 문제를 해결하는 학문 분야입니다. 데이터 과학은 통계학, 컴퓨터 과학, 수학 등을 융합하여 데이터를 분석하고, 이를 기반으로 의사결정을 지원하는 학문적 기초를 제공합니다. 데이터 과학자는 데이터를 수집, 처리, 분석하여 유의미한 결과를 도출하며, 이를 통해 비즈니스 문제를 해결하거나 새로운 기회를 창출합니다. 2. 데이터 애널리틱스 데이터 애널리틱스(Data Analytics)는 데이터를 분석하여 과거의 패턴을 파악하고, 현재...2025.01.26
-
비즈니스 애널리틱스의 정의와 관련 용어 설명2025.01.261. 비즈니스 애널리틱스 비즈니스 애널리틱스(Business Analytics, BA)는 데이터를 분석하여 기업이 비즈니스 의사결정을 내리는 데 필요한 인사이트를 제공하는 과정이다. 비즈니스 애널리틱스의 역사는 기업이 데이터의 활용을 통해 의사결정을 최적화하려는 노력에서 시작되었다. 비즈니스 애널리틱스는 기술적 분석, 예측적 분석, 처방적 분석 등 세 가지 유형으로 나뉜다. 2. 데이터 과학 데이터 과학은 정형 및 비정형 데이터를 분석해 유용한 정보를 추출하는 과정으로, 데이터 수집 및 관리, 데이터 분석, 결과 시각화 및 커뮤니케...2025.01.26
-
[글로벌 비즈니스 애널리틱스] 비즈니스 애널리틱스의 역사와 정의, 관련 용어 설명2025.01.261. 비즈니스 애널리틱스의 역사 비즈니스 애널리틱스는 20세기 후반부터 본격적으로 발전하기 시작했다. 1960년대와 70년대에는 데이터 처리 기술의 발전이 주로 통계적 분석과 의사결정 지원 시스템(DSS)에 중점을 두고 있었다. 1990년대에는 데이터베이스 관리 시스템(DBMS)과 데이터 마이닝 기법이 등장하면서 보다 복잡한 데이터 분석이 가능해졌다. 2000년대 들어서는 빅데이터와 클라우드 컴퓨팅의 등장으로 인해 데이터 수집과 저장, 분석이 용이해지면서 비즈니스 애널리틱스가 더욱 발전하였다. 2. 비즈니스 애널리틱스의 정의 비즈니...2025.01.26