
초음파 SPI 원리 및 기초 물리
본 내용은
"
초음파 SPI 원리 및 기초 물리
"
의 원문 자료에서 일부 인용된 것입니다.
2023.06.15
문서 내 토픽
-
1. Amplitude, Power, and IntensityAmplitude는 음향 변수의 최대 주기적 변화량을 나타내며, Power는 에너지 전달률 또는 작업 수행률을 나타냅니다. Intensity는 빔 면적당 Power로 정의되며, 생물학적 효과의 중요한 매개변수입니다. 이들 간의 관계는 Power는 진폭에 비례하고, Intensity는 진폭의 제곱에 비례하며, 빔 면적에 반비례합니다.
-
2. AttenuationAttenuation은 음파가 매질을 통과하면서 진폭과 강도가 약해지는 현상을 말합니다. Attenuation Coefficient는 매질을 통과하면서 진폭과 강도가 감소하는 비율을 나타내며, 주파수에 비례합니다. Attenuation은 주파수, 경로 길이에 비례하며, 주요 원인은 흡수, 반사, 굴절, 산란 등입니다. 매질에 따라 Attenuation 특성이 다르며, 공기에서 가장 크고 물, 혈액, 조직 등에서 작습니다.
-
3. Range Equation, 13 Microsecond Rule, and Time of FlightRange Equation은 반사체의 깊이를 추정하는 식으로, 음파의 왕복 시간과 평균 전파 속도를 이용합니다. 13 Microsecond Rule은 반사체가 1cm 깊어질 때마다 13μs의 시간이 경과한다는 것을 의미합니다. Time of Flight는 음파가 반사체까지 가는 시간을 나타냅니다.
-
4. Bandwidth and Quality FactorBandwidth는 펄스에 포함된 주파수 범위를 나타내며, 넓은 대역폭은 축 방향 해상도를 향상시킵니다. 운영 주파수는 공진 주파수로, 진동자 두께에 따라 결정됩니다. Quality Factor(QF)는 주파수 대역폭과 관련되며, 낮은 QF는 짧은 펄스 지속 시간과 넓은 대역폭을 의미하여 진단 초음파에 유리합니다.
-
1. Amplitude, Power, and IntensityAmplitude, power, and intensity are fundamental concepts in physics and engineering that are crucial for understanding the behavior of waves, including electromagnetic waves and sound waves. Amplitude refers to the maximum displacement or magnitude of a wave from its resting position, and it is directly related to the energy carried by the wave. Power, on the other hand, is the rate at which energy is transferred by the wave, and it is proportional to the square of the amplitude. Intensity, which is the power per unit area, is also an important measure as it determines the strength of the wave at a particular location. These concepts are essential for designing and analyzing various systems, such as communication systems, radar systems, and audio systems, where the efficient transfer and management of energy are critical. Understanding the relationships between amplitude, power, and intensity is crucial for optimizing the performance of these systems and ensuring their effective operation.
-
2. AttenuationAttenuation is a fundamental concept in wave propagation and is crucial for understanding the behavior of various types of waves, including electromagnetic waves and sound waves. Attenuation refers to the reduction in the amplitude or intensity of a wave as it propagates through a medium. This reduction can be caused by various factors, such as absorption, scattering, and geometric spreading. Understanding attenuation is essential for designing and analyzing a wide range of systems, including communication systems, radar systems, and audio systems. In communication systems, for example, attenuation can limit the range and quality of the transmitted signal, and it is necessary to compensate for this effect through the use of amplifiers, repeaters, or other signal processing techniques. Similarly, in radar systems, attenuation can affect the detection range and accuracy, and it must be taken into account in the system design. Understanding the causes and effects of attenuation is crucial for optimizing the performance of these systems and ensuring their effective operation.
-
3. Range Equation, 13 Microsecond Rule, and Time of FlightThe range equation, 13 microsecond rule, and time of flight are important concepts in radar and sonar systems. The range equation is used to calculate the maximum detection range of a radar or sonar system, taking into account factors such as the transmitter power, antenna gain, receiver sensitivity, and target cross-section. The 13 microsecond rule is a useful rule of thumb that relates the range resolution of a radar system to the bandwidth of the transmitted signal. Time of flight, on the other hand, refers to the time it takes for a signal to travel from the transmitter to the target and back, and it is used to determine the distance to the target. These concepts are crucial for the design and operation of radar and sonar systems, as they allow engineers to optimize the performance of these systems and ensure their effective operation in a variety of applications, such as air traffic control, weather monitoring, and underwater navigation. Understanding these concepts is essential for anyone working in the field of radar and sonar technology.
-
4. Bandwidth and Quality FactorBandwidth and quality factor are important concepts in the design and analysis of various types of systems, including communication systems, electronic circuits, and signal processing applications. Bandwidth refers to the range of frequencies or frequencies over which a system or device can operate effectively, and it is a crucial parameter in determining the amount of information that can be transmitted or processed. The quality factor, on the other hand, is a measure of the selectivity or sharpness of a system's response, and it is particularly important in the design of filters, oscillators, and other frequency-dependent components. Understanding the relationship between bandwidth and quality factor is essential for optimizing the performance of these systems and ensuring their effective operation. For example, in communication systems, the bandwidth of the transmitted signal must be carefully matched to the available channel bandwidth to maximize the data rate and minimize interference. Similarly, in electronic circuits, the quality factor of the components can affect the stability, noise, and power consumption of the circuit. Overall, the concepts of bandwidth and quality factor are fundamental to the design and analysis of a wide range of systems and are essential for anyone working in the field of engineering and technology.
-
초음파 SPI 기초물리 및 기초원리1. Acoustic Waves 음향파는 매질 내에서 진동하며 전파되는 파동으로, 온도, 압력, 밀도 등의 변화로 나타납니다. 진공에서는 전파되지 않지만 전자기파는 진공에서도 전파될 수 있습니다. 2. Mechanical Waves 기계적 파동은 매질이 필요하며, 매질의 입자들이 전파 방향으로 진동하며 전파됩니다. 종파와 횡파로 구분되며, 뼈 조직만이 횡파...2025.05.09 · 의학/약학
-
초음파 SPI 기초물리 및 기초원리1. Normal Incidence (Perpendicular Incidence) 정상 입사(수직 입사)는 음파 빔이 두 매질 사이의 경계면에 0°의 입사각으로 만나는 경우를 말한다. 이 경우 반사음은 입사음과 같은 방향으로 돌아오고, 투과음은 입사음과 같은 방향으로 계속 진행한다. 굴절은 일어나지 않는다. 2. Oblique Incidence 사선 입사는...2025.05.09 · 의학/약학
-
초음파 SPI 기초물리 및 기본원리31. Sound Beam 초음파 빔의 형태와 특성에 대해 설명합니다. 초음파 빔은 균일하지 않고 전파 거리에 따라 폭이 변화합니다. 근거리 영역(Near Zone)에서는 빔 폭이 좁아지다가 초점 지점에서 가장 좁아지며, 그 이후 멀어질수록 빔 폭이 다시 넓어집니다. 초음파 빔의 특성을 이해하는 것은 초음파 영상 진단에 중요합니다. 2. Parts of th...2025.05.09 · 의학/약학
-
초음파 SPI 기초물리 및 기초원리5 3페이지
TYPEs OF INCIDENCE1. Normal Incidence (Perpendicular Incidence) 2. Oblique Incidence 3. Refraction 4. Acoustic Impedance (z) 5. Important Terms1. Normal Incidence (Perpendicular Incidence)1) Incident sound beam encounters a boundary between two media at a 0° incident angle- The sound beam is perpend...2023.06.16· 3페이지 -
초음파 SPI 기초물리 및 기초원리4 8페이지
SOUND WAVES1.Acoustic waves 2.Mechanical waves 3.Terms describing sound waves/The properties of sound 4.Termas describing pulsed waves 5.Level of sound1. Acoustic Waves1) Traveling variation (oscillation) in acoustic variables- Molecules oscillate back and forth to propagate sound waves- Do not move...2023.06.16· 8페이지 -
초음파 SPI 기초물리 및 기본원리3 3페이지
SOUND BEAM1.shppe of sound beam 2.parts of sound beam 3.Beam diameter 4. Determining the Focal depth1. Shape of sound beam1) Sound beam is not uniform as it travels (beam width changes as it travels)- The beam width is the same as the transducer diameter at the starting point (beam width=disk diamet...2023.06.16· 3페이지