
E. coli와 Yeast의 Cell Culture
본 내용은
"
[화학생물공정실험]E. coli 와 Yeast의 Cell Culture
"
의 원문 자료에서 일부 인용된 것입니다.
2023.04.20
문서 내 토픽
-
1. ProkaryoteProkaryote는 핵막이 없는 원핵생물을 의미하며, 단세포생물일 경우가 많고 주로 무성 생식 방법인 Binary Fission을 통해 번식한다. 이외에도 진핵생물인 Fungi에 속하는 이스트의 몇 가지 종도 Binary Fission을 한다.
-
2. Binary FissionBinary Fission은 가장 간단한 생식 방법 중 하나로, DNA 복제 후 세포 분열을 통해 두 개의 동일한 딸세포가 형성된다. 이러한 Binary Fission은 미생물의 유전적, 환경적 요소에 따라 생식 주기가 결정되며, 이에 따라 미생물 개체 수가 변화한다.
-
3. Growth Cycle미생물의 성장 주기는 Lag Phase, Exponential Phase, Stationary Phase, Death Phase로 나뉜다. Exponential Phase에서는 지수적 증가가 관찰되며, 이때 Specific Growth Rate과 Doubling Time을 계산할 수 있다.
-
4. Measurement of Cell Growth미생물 농도 측정 방법에는 Petroff-Hausser Counting Chamber, Agar Media 배양, Filtration, Turbidimetric Measurement 등이 있다. 이 중 Turbidimetric Measurement를 통해 Optical Density를 측정하여 세포 농도를 간접적으로 계산할 수 있다.
-
5. Experimental Methods본 실험에서는 E. coli와 Yeast의 Cell Culture를 준비하고, Shaking Incubator에서 배양하며 주기적으로 Optical Density를 측정하였다. 이를 통해 각 미생물의 Specific Growth Rate과 Doubling Time을 계산하였다.
-
6. Error Analysis실험 결과에서 나타난 오차 요인으로는 Cell Culture 환경, 실험 방법, Lag Phase 등이 있다. 특히 Sampling, Optical Density 측정, 시간 측정 등의 과정에서 오차가 발생했을 것으로 분석된다.
-
7. Sterilization Methods미생물 실험에서는 물리적, 화학적 멸균법이 사용된다. 물리적 멸균법에는 열, 자외선, 여과 등이 있고, 화학적 멸균법에는 가스, 액체 멸균제 등이 있다. 이러한 멸균 방법은 실험의 정확성을 높이는 데 중요하다.
-
1. ProkaryoteProkaryotes are single-celled organisms that lack a true nucleus and membrane-bound organelles. They are the simplest and most abundant life forms on Earth, playing crucial roles in various ecosystems. Prokaryotes are divided into two main domains: Archaea and Bacteria. Archaea are often found in extreme environments, while Bacteria are more widely distributed. Prokaryotes have a simpler cellular structure compared to eukaryotes, but they possess remarkable adaptability and metabolic diversity. Understanding prokaryotes is essential for fields such as microbiology, biotechnology, and environmental science, as they have significant impacts on human health, agriculture, and the global ecosystem.
-
2. Binary FissionBinary fission is the primary mode of asexual reproduction in prokaryotes, where a single parent cell divides into two genetically identical daughter cells. This process is a fundamental aspect of prokaryotic biology, enabling rapid population growth and adaptation to diverse environments. During binary fission, the prokaryotic chromosome is replicated, and the two copies are segregated into the daughter cells. The process is tightly regulated and involves various cellular mechanisms to ensure accurate chromosome segregation and cell division. Understanding binary fission is crucial for studying prokaryotic growth, genetics, and the development of antimicrobial strategies. It also provides insights into the evolution and diversification of prokaryotic species.
-
3. Growth CycleThe growth cycle of prokaryotes is a dynamic process that involves several distinct phases, including lag phase, exponential phase, stationary phase, and death phase. During the lag phase, prokaryotic cells adapt to their new environment and prepare for rapid growth. The exponential phase is characterized by an exponential increase in cell numbers, as the cells divide at a constant rate. The stationary phase occurs when the growth rate slows down due to limited resources or the accumulation of waste products. Finally, the death phase is marked by a decline in the number of viable cells. Understanding the growth cycle of prokaryotes is essential for various applications, such as microbial fermentation, bioremediation, and the development of antimicrobial strategies. It also provides insights into the factors that influence prokaryotic population dynamics and their adaptability to changing environmental conditions.
-
4. Measurement of Cell GrowthAccurate measurement of prokaryotic cell growth is crucial for various scientific and industrial applications, such as microbiology, biotechnology, and environmental monitoring. Several methods are available for measuring cell growth, including direct cell counting, optical density (OD) measurements, and indirect methods like colony-forming unit (CFU) counts. Direct cell counting involves physically counting the number of cells using a hemocytometer or automated cell counters, providing a direct measure of cell density. Optical density measurements rely on the light-scattering properties of cells, which correlate with cell concentration. Indirect methods, such as CFU counts, involve culturing cells on agar plates and counting the number of colonies formed, which can be used to estimate the number of viable cells. The choice of method depends on the specific application, the type of prokaryotic cells, and the desired level of accuracy and precision. Proper understanding and application of these measurement techniques are essential for studying prokaryotic growth, optimizing fermentation processes, and monitoring environmental microbial populations.
-
5. Experimental MethodsExperimental methods in prokaryotic biology are crucial for advancing our understanding of these diverse and ubiquitous organisms. Common experimental approaches include culturing techniques, genetic manipulation, biochemical assays, and microscopy. Culturing methods, such as liquid media and agar plates, allow for the isolation and propagation of specific prokaryotic strains, enabling the study of their physiology, metabolism, and growth characteristics. Genetic manipulation techniques, including transformation, transduction, and conjugation, facilitate the introduction of genetic modifications and the investigation of gene function. Biochemical assays, such as enzyme activity measurements and metabolite quantification, provide insights into the molecular mechanisms underlying prokaryotic processes. Microscopy techniques, including light microscopy and electron microscopy, enable the visualization of prokaryotic cell structure, morphology, and interactions. The careful design and execution of these experimental methods, combined with rigorous data analysis, are essential for generating reliable and reproducible findings in prokaryotic biology, which can then be applied to diverse fields, from biotechnology to environmental microbiology.
-
6. Error AnalysisError analysis is a critical component of experimental methods in prokaryotic biology, as it helps researchers understand the reliability and limitations of their data. Potential sources of error in prokaryotic studies include sampling errors, measurement errors, and experimental design flaws. Sampling errors can arise from the heterogeneity of microbial populations or the uneven distribution of cells in a sample. Measurement errors can be introduced by the use of imprecise instruments or the inherent variability of biological systems. Experimental design flaws, such as inadequate controls or confounding factors, can also contribute to errors. Rigorous error analysis, including the calculation of standard deviations, confidence intervals, and statistical significance, allows researchers to quantify the uncertainty in their results and make informed decisions about the validity and interpretation of their findings. By incorporating error analysis into their experimental protocols, prokaryotic biologists can improve the reliability of their research, identify sources of variability, and develop more robust experimental designs. This, in turn, enhances the overall quality and reproducibility of studies in the field of prokaryotic biology.
-
7. Sterilization MethodsSterilization methods are essential in prokaryotic biology to ensure the integrity and reliability of experimental results by eliminating unwanted microbial contamination. Common sterilization techniques include autoclaving, filtration, and the use of chemical disinfectants. Autoclaving, which involves exposing materials to high-pressure steam, is a highly effective method for killing a wide range of prokaryotic cells and spores. Filtration, using membranes with pore sizes small enough to retain microorganisms, is useful for sterilizing heat-sensitive solutions. Chemical disinfectants, such as alcohols, bleach, and quaternary ammonium compounds, can also be employed to inactivate prokaryotic cells on surfaces and in liquids. The choice of sterilization method depends on the nature of the materials, the types of prokaryotic organisms present, and the specific experimental requirements. Proper implementation of sterilization protocols is crucial to maintain the integrity of cultures, reagents, and equipment, ensuring the reliability and reproducibility of prokaryotic research. Understanding the principles and limitations of various sterilization methods is essential for researchers working in the field of prokaryotic biology.
-
8. Measurement of Cell GrowthAccurate measurement of prokaryotic cell growth is crucial for various scientific and industrial applications, such as microbiology, biotechnology, and environmental monitoring. Several methods are available for measuring cell growth, including direct cell counting, optical density (OD) measurements, and indirect methods like colony-forming unit (CFU) counts. Direct cell counting involves physically counting the number of cells using a hemocytometer or automated cell counters, providing a direct measure of cell density. Optical density measurements rely on the light-scattering properties of cells, which correlate with cell concentration. Indirect methods, such as CFU counts, involve culturing cells on agar plates and counting the number of colonies formed, which can be used to estimate the number of viable cells. The choice of method depends on the specific application, the type of prokaryotic cells, and the desired level of accuracy and precision. Proper understanding and application of these measurement techniques are essential for studying prokaryotic growth, optimizing fermentation processes, and monitoring environmental microbial populations.
-
[생화학실험]형질 전환 6페이지
형질 전환1. 실험 이론 및 원리가. 실험개요형질전환이란 외부에서 만들어진 plasmid를 plasmid가 없는 원핵 세포 cell에 넣어 그 원핵 세포가 본래 성질과는 다른 새로운 유전형질을 나타내게 하여 삽입한 plasmid를 대량으로 키우는 과정이다. 형질전환은 폐렴구균을 통해 DNA가 유전물질임을 PCR과 클로닝 등의 방법으로 증명했다. 인슐린의 경우 처음에는 돼지에게서 추출했지만 많은 수요에 비해 공급은 원활하지 못 했고 깨끗하지 않을 수도 있다는 의견 때문에 중지되었다. 그 후, 인간에게서 인슐린을 만드는 단백질(염기서열...2023.10.08· 6페이지 -
형질전환 실험보고서 9페이지
형질전환2022. 5. 24실험개요형질전환이란 외부에서 만들어진 plasmid를 plasmid가 없는 원핵 세포 cell에 넣어 그 원핵 세포가 본래 성질과는 다른 새로운 유전형질을 나타내게 하여 삽입한 plasmid를 대량으로 키우는 과정이다. 형질전환은 폐렴구균을 통해 DNA가 유전물질임을 PCR과 클로닝 등의 방법으로 증명했다. 인슐린의 경우 처음에는 돼지에게서 추출했지만 많은 수요에 비해 공급은 원활하지 못 했고 깨끗하지 않을 수도 있다는 의견 때문에 중지되었다. 그 후, 인간에게서 인슐린을 만드는 단백질(염기서열)을 찾아내...2023.03.18· 9페이지 -
포항공대 화학생명공학실험[포스텍 A]Pre-Report (Cell Culture) 8페이지
Cell Culture실험 제목Cell Culture실험 목적복제를 완료한 expression vector 가 transformation 되어있는 대장균(BL21)의 세포증식 형태를 시간의 흐름에 따라서 관찰한다. IPTG를 이용해 세포 증식 중 단백질 발현을 induction할 수 있고 원리를 이해한다.이론 및 배경지식Promoter (T7 promoter)Promoter란 DNA에 RNA polymerase가 결합하여 transcription을 하는데 필수적인 부분을 말한다. 올바른 promoter가 있어야만 효소가 DNA를 m...2020.06.06· 8페이지 -
E.coli Culture 유입물 11페이지
생화학실험E.coli Culture1.실험 목적? 미생물을 배양하기 위해서는 미생물에게 영양분을 공급하는 배지(media)가 필요하다.대장균(Escherichia coli, E.coli)을 배양하면 미생물의 동정, 미행물의 관계를 알 수 있고 플라즈미드를 추출할 수 도 있다. 따라서 대장균 (Escherichia coli, E.coli)의 배양에 가장 적합한 배지를 만들어 E.coli를 배양해 본다.2. 실험원리? E.coli (Escherichia coli)- 대장균(Escherichia coli) : 온혈 동물의 창자(대장과 소...2012.05.04· 11페이지 -
E.coli배양(결과보고서) 5페이지
E.coli Culture실험날짜 및 시간 :학번 :실험자 :공동실험자 :1. 시약 및 기구1)시약-LB(Luria Bertani) Broth : LB Broth란, 배지 중 특별히 합성된 균이 잘 자랄 수 있는 배지로 단백질의 트립신 부분 분해물인 trypton, 효모 추출물인 yeast extract와 NaCl을 섞어 만든 배지이다.-Agar : 해조나 우뭇가사리로 만드는 수산 제품. 끓이면 투명하고 물렁물렁해진다. 과자·한천지 따위를 만들거나 요리할 때에 쓰며, 등사판 인쇄 중에 한천판(寒天版) 인쇄 재료로도 쓴다.-증류수-A...2013.06.19· 5페이지