
Site-directed mutagenesis, DNA sequencing
본 내용은
"
[서강대학교 현대생물학실험2] (4차 풀레포트) Site-directed mutagenesis, DNA sequencing
"
의 원문 자료에서 일부 인용된 것입니다.
2024.09.11
문서 내 토픽
-
1. GFP (green fluorescent protein)GFP는 Aequorea victoria로부터 추출한 형광 단백질로, 빛을 흡수하여 형광을 발광한다. GFP는 11개의 β-sheet가 β-barrel 구조를 이루고 있으며, barrel 내의 chromophore가 빛을 흡수하여 전자를 excitation시키고 바닥 상태로 돌아가면서 형광을 방출한다. GFPuv는 GFP의 variant 중 하나로, UV(ultra violet)을 흡수하여 형광을 방출한다.
-
2. Site-directed mutagenesisSite-directed mutagenesis는 double-stranded plasmid DNA에 mutation을 도입하는 방법이다. Dam(DNA adenine methylase)는 5'-GATC-3' 서열의 adenine에 methylation하는 효소이다. 새로 합성되는 가닥은 methylation되어 있지 않기 때문에 Mismatch repair에서 methylation된 template strand와 구분할 수 있다. DpnⅠ은 methylation된 adenine을 포함하는 5'-GATC-3' 서열을 인식하여 절단하는 TypeⅡ endonuclease이다. 새로 합성된 mutated DNA는 methyl기를 포함하지 않기 때문에 절단되지 않는다.
-
3. DNA sequencingDNA sequencing은 DNA의 염기서열을 결정하는 작업이다. DNA sequencing 기술로는 Maxam and Gilbert sequencing과 Sanger sequencing, NGS(Next generation sequencing) 가 있으며, 본 실험은 Sanger sequencing의 한 방법인 Dye-terminator sequencing을 이용하였다. Sanger sequencing은 dNTP(deoxynucleotide)와 ddNTP(dideoxynucleotide)의 구조적 차이를 이용하여 분석하는 방법이다.
-
4. ChromophoreGFP의 chromophore가 빛을 흡수하여 전자를 excitation시키고, 전자가 바닥 상태로 돌아가면서 형광을 방출한다. 65번부터 67번 amino acid는 chromophore를 구성하고, 145번은 chromophore과 interaction하는 amino acid이다.
-
5. Mutation analysis본 실험에서는 GFPuv의 chromophore를 구성하는 아미노산 66Y를 66H로 mutation하였고, 추가로 145Y를 145F로 mutation하였다. Y66H만 mutation된 GFP보다 Y66H와 Y145F가 모두 mutation된 GFP가 더 강한 빛을 발광하는 것을 확인하였다.
-
1. GFP (green fluorescent protein)GFP (green fluorescent protein) is a remarkable protein that has revolutionized the field of molecular biology and biochemistry. Its ability to emit a bright green fluorescence when exposed to ultraviolet or blue light has made it an invaluable tool for researchers. GFP has been widely used as a reporter gene, allowing scientists to track the expression and localization of proteins of interest within living cells. The discovery and development of GFP have been recognized with the Nobel Prize in Chemistry, highlighting its significance in the scientific community. GFP's unique properties, such as its stability, non-invasiveness, and ease of detection, have made it a versatile and indispensable tool in various applications, including cell biology, developmental biology, and neuroscience. The continued research and engineering of GFP variants have further expanded its capabilities, enabling researchers to monitor a wide range of cellular processes and phenomena with unprecedented precision and sensitivity.
-
2. Site-directed mutagenesisSite-directed mutagenesis is a powerful technique that allows researchers to introduce specific, targeted changes in the DNA sequence of a gene or a plasmid. This method is essential for studying the structure-function relationship of proteins, investigating the effects of specific amino acid substitutions, and engineering proteins with desired properties. By using site-directed mutagenesis, scientists can precisely modify the genetic code, enabling them to explore the functional consequences of these changes and gain valuable insights into the underlying mechanisms of biological processes. The ability to introduce point mutations, insertions, or deletions at specific locations within a gene has revolutionized the field of molecular biology, allowing for the creation of novel proteins, the investigation of disease-causing mutations, and the optimization of enzymes and other biomolecules for various applications. Site-directed mutagenesis has become an indispensable tool in the arsenal of modern molecular biology, driving advancements in fields such as protein engineering, drug discovery, and the development of genetically modified organisms.
-
3. DNA sequencingDNA sequencing is a fundamental technique in molecular biology that has transformed our understanding of genetics and genomics. The ability to determine the precise order of nucleotides in a DNA molecule has enabled researchers to decipher the genetic code, unravel the mysteries of living organisms, and unlock the secrets of evolution. The development of various DNA sequencing technologies, from the pioneering Sanger method to the more recent high-throughput next-generation sequencing platforms, has significantly accelerated the pace of scientific discovery. DNA sequencing has become an indispensable tool in a wide range of applications, including genome assembly, gene identification, disease diagnosis, forensics, and personalized medicine. The exponential growth in DNA sequencing capabilities has led to the generation of vast amounts of genomic data, which has fueled the emergence of bioinformatics and computational biology as essential disciplines. As DNA sequencing technologies continue to evolve, becoming more accurate, efficient, and cost-effective, they will undoubtedly play an increasingly crucial role in advancing our understanding of life at the molecular level and driving breakthroughs in various fields of science and medicine.
-
4. ChromophoreThe chromophore is a fundamental component of many biological molecules and plays a crucial role in various biological processes. A chromophore is a specific part of a molecule that is responsible for its ability to absorb and emit light, giving rise to its characteristic color or fluorescence. In the context of proteins, chromophores are often found in the active sites or specific regions of the protein structure, where they facilitate important functions such as light sensing, energy transfer, and signal transduction. The study of chromophores has been instrumental in understanding the structure and function of proteins, as well as in the development of various biotechnological applications. For example, the chromophore in the green fluorescent protein (GFP) is responsible for its fluorescent properties, making it a valuable tool in cell biology and imaging. Similarly, the chromophores in photoreceptor proteins, such as rhodopsin, are essential for vision and light-sensing mechanisms in organisms. The versatility and diversity of chromophores have also led to their use in a wide range of applications, including fluorescent probes, biosensors, and photodynamic therapy. As our understanding of chromophores continues to deepen, it will undoubtedly lead to further advancements in fields ranging from molecular biology and biochemistry to materials science and nanotechnology.
-
5. Mutation analysisMutation analysis is a crucial tool in the field of genetics and molecular biology, enabling researchers to understand the genetic basis of various diseases, traits, and evolutionary processes. By studying the changes or mutations in the DNA sequence, scientists can gain valuable insights into the underlying mechanisms that drive biological phenomena. Mutation analysis encompasses a wide range of techniques, from simple PCR-based methods to advanced next-generation sequencing approaches, allowing for the identification and characterization of genetic variations at the nucleotide level. The ability to detect and analyze mutations has revolutionized our understanding of genetic disorders, cancer biology, and the evolution of species. Mutation analysis has become an indispensable tool in personalized medicine, enabling the development of targeted therapies and the identification of genetic markers for disease risk and prognosis. Furthermore, the study of mutations has provided crucial insights into the mechanisms of evolution, shedding light on how organisms adapt to changing environments and how new species arise. As our understanding of the human genome and the genomes of other organisms continues to expand, the importance of mutation analysis will only grow, driving advancements in fields such as diagnostics, drug development, and evolutionary biology.
-
Site-directed mutagenesis & DNA sequencing1. Site-directed mutagenesis Site-directed mutagenesis는 원하는 돌연변이를 포함하는 짧은 DNA primers를 사용하여 DNA 염기서열 특정 위치의 mutation을 일으켜 돌연변이를 얻는 방법입니다. 이 방법을 이용하여 GFP의 chromophore 아미노산 서열을 변경하여 다양한 색상의 형광 단백질을 만들 수...2025.01.18 · 자연과학
-
PCR 관련 퀴즈 및 정답(생화학) A+ 과제레포트1. PCR의 3단계 procedures PCR 반응요소에는 Target DNA, Primers (oligonucleotides complementary to target), Nucleotides(dATP, dCTP, dGTP, dTTP), Thermostable DNA polymerase가 있다. PCR의 세 가지 반응 단계는 DNA 변성 (Denatur...2025.01.20 · 자연과학
-
서강대학교 현생실2 Site-directed mutagenesis를 통한 Mutagenic reaction, Transformation과 Sample DNA의 DNA 서열 분석 14페이지
Sited-directed mutagenesis를 통한 Mutagenic reaction, Transformation과 Sample DNA의 DNA sequencing을 통한 서열 분석Abstract이번 실험에서는 Site-directed mutagenesis를 유발하고, Sample DNA의 Sequence를 분석하는 목적을 가진다. 지금까지 Vector를 이용해 E. coli plasmid에 Transformation을 통해 만든 미지의 Sample을 제한효소인 Ndel과 Hindlll로 절단한 뒤, Agarose gel ele...2022.09.05· 14페이지 -
[A]서강대학교 현대생물학실험2_4차 풀레포트_Site-directed mutagenesis & DNA sequencing 17페이지
Site-directed mutagenesis & DNA sequencing Abstract Site-directed mutagenesis란 원하는 돌연변이를 포함하는 짧은 DNA primers를 사용하여 DNA 염기서열 특정 위치의 mutation을 일으켜 돌연변이를 얻는 방법이다. GFP는 빛을 흡수하여 발광하는 분자인 Chromophore를 보유하는데, β-barrel 중간에 위치하며 65Ser-66Tyr-67Gly으로 구성되어 있고, 145Tyr과 상호작용을 통해 기능한다. pGFPuv는 3337bp의 크기를 갖는 plasm...2024.07.13· 17페이지 -
PCR 관련 퀴즈 및 정답(생화학) A+ 과제레포트 1페이지
9. PCR에 대해서9-1) PCR의 3단계 procedures에 대해서 간단히 설명하시오.PCR 반응요소에는Target DNA, Primers (oligonucleotides complementary to target), Nucleotides(dATP, dCTP, dGTP, dTTP), Thermostable DNA polymerase가 있다.우선 PCR의 세 가지 반응 단계 중 첫 번째는 DNA 변성 (Denaturation)이다. 두가닥의 DNA를 95℃의 열을 가해 분리시킨다. 그렇게 되면, 각각 한가닥 DNA로 해리된다, ...2024.08.05· 1페이지 -
서강대 현대생물학실험2 site directed mutagenesis와 DNA sequencing 17페이지
AbstractSite-directed mutagenesis는 DNA sequence에 point mutation, deletion, insertion등의 돌연변이를 원하는 돌연변이가 포함된 short DNA primer를 사용해 도입하는 방식이다. Original template DNA는 methylated adenosine 포함 서열을 분해하는 DpnⅠ으로 제거할 수 있다. 본 실험에서 사용하는 Pfu DNA polymerase는 proofreading 기능을 가지고 있다. GFP는 발광하는 분자인 chromophore를 포함하...2024.12.31· 17페이지 -
Site-directed Mutagenesis & DNA sequencing 22페이지
Abstract이번 실험은 site-directed mutagenesis의 방법 중 하나인 whole plasmid mutagenesis를 통하여 특정한 plasmid의 DNA에 돌연변이를 유도하여 이를 관찰하는 실험이었다. whole plasmid mutagenesis의 첫 번째 과정인 mutagenic PCR을 하면 mutation된 plasmid와 mutation되지 않은 original template DNA가 존재하게 되는데, 이러한 original template DNA는 두 번째 과정인 DpnⅠ digestion으로 제...2019.10.28· 22페이지