
숭실대학교 신소재공학실험2 단결정 분석 및 용액 합성 예비보고서
본 내용은
"
숭실대학교 신소재공학실험2 단결정 분석 및 용액 합성 예비보고서
"
의 원문 자료에서 일부 인용된 것입니다.
2024.08.27
문서 내 토픽
-
1. Bragg's law브래그의 법칙은 빛의 회절 및 반사와 관련된 법칙으로, 결정 고체 내부를 이루는 원자들에 X-ray의 회절을 통해 반사된 X선이 특정 패턴을 생성한다는 것을 발견하여 제안되어진 법칙입니다. 결정은 규칙적인 배열의 구조를 가지고 있어, 다양한 각도로 일정한 파장의 빛을 비추면 어느 각도에서는 반사가 강한 빛으로 일어나지만 다른 각도에서는 반사가 일어나지 않습니다. 이는 결정을 구성하는 원자에 의해 산란된 빛이 결정의 구조 반복에 의해 강해지거나 약해지기 때문입니다. 브래그의 법칙은 빛의 파장, 결정 구조의 폭, 반사면과 광선이 이루는 각도 사이의 관계를 설명합니다.
-
2. X-ray diffraction (XRD)X-선을 결정을 형성하고 있는 구조에 쪼이게 되면 X-선이 산란하게 되는데, 이를 Scattering이라고 합니다. 결정 구조에서 원자들이 일정한 간격으로 배열되어 있으면 각 원자로부터 산란하는 X-선들이 위상 차이에 따라 서로 간섭을 하게 됩니다. 경로 차이에 해당하는 2dsin theta 가 쪼여준 X-선 파장의 정수배가 되면 보강 간섭과 동시에 회절의 패턴이 나타납니다. XRD 분석 방법은 샘플 준비, 측정 조건 설정, X선 측정, 회절 패턴 분석, 결정구조 해석의 순서로 진행됩니다.
-
3. Miller indices밀러지수는 결정의 면과 방향을 나타내는 지수로서, 결정의 구조를 기하학적으로 그리지 않아도 구별할 수 있게 해줍니다. 밀러지수는 (hkl)로 표시되며, h, k, l 값은 항상 정수입니다. 밀러지수는 결정면과 결정축이 교차하여 만나는 지점의 절편값을 역수로 표시하며, 분모가 있다면 공통분모를 제거하여 최소의 정수비로 표시합니다. 음의 값은 지수 위에 bar를 씌워서 표기합니다.
-
1. Bragg's lawBragg's law is a fundamental principle in X-ray crystallography that describes the conditions under which constructive interference of X-rays scattered by the atoms in a crystal will occur. This law, developed by the physicists William Henry Bragg and William Lawrence Bragg, provides a simple and elegant way to understand how X-rays interact with the periodic structure of crystalline materials. By relating the wavelength of the incident X-rays, the angle of incidence, and the spacing between the atomic planes in the crystal, Bragg's law allows researchers to determine the crystal structure of unknown materials. This powerful tool has been instrumental in the advancement of materials science, solid-state physics, and many other fields that rely on the study of crystalline structures. The simplicity and versatility of Bragg's law make it a cornerstone of modern X-ray diffraction techniques, which continue to provide invaluable insights into the atomic-scale structure and properties of a wide range of materials.
-
2. X-ray diffraction (XRD)X-ray diffraction (XRD) is a powerful analytical technique that has revolutionized our understanding of the atomic and molecular structure of materials. By utilizing the wave-like properties of X-rays, XRD allows researchers to probe the periodic arrangement of atoms in crystalline solids, providing detailed information about the crystal structure, phase composition, and even the presence of defects or impurities. The underlying principle of XRD is Bragg's law, which describes the conditions under which constructive interference of scattered X-rays will occur, resulting in characteristic diffraction patterns that can be analyzed to determine the structural properties of the material. XRD has become an indispensable tool in a wide range of fields, including materials science, solid-state chemistry, mineralogy, and even forensics. Its ability to provide non-destructive, quantitative analysis of crystalline materials has made it an essential technique for the characterization and development of new materials, from semiconductors and ceramics to pharmaceuticals and biomaterials. As our understanding of the structure-property relationships in materials continues to evolve, the importance of XRD as a versatile and powerful analytical technique will only continue to grow.
-
3. Miller indicesMiller indices are a fundamental concept in crystallography that provide a concise and unambiguous way to describe the orientation of crystal planes and directions within a crystalline material. Developed by the British mineralogist William Hallowes Miller, this system of notation uses a set of three integers (h, k, l) to represent the reciprocal of the intercepts made by a particular plane with the three crystallographic axes. These indices not only allow for the identification of specific crystal planes but also enable the determination of important properties, such as the interplanar spacing and the angle between different planes. The versatility of Miller indices has made them an essential tool in the study and characterization of crystalline materials, from the analysis of X-ray diffraction patterns to the understanding of crystal growth and defects. Moreover, the Miller index system is widely used in materials science, solid-state physics, and chemistry, where the precise description of crystal structures and their orientation is crucial for understanding and predicting the behavior of materials at the atomic scale. As our knowledge of the structure-property relationships in materials continues to advance, the importance of Miller indices as a fundamental language of crystallography will only become more pronounced.