BRONZE
BRONZE 등급의 판매자 자료

포물선 운동을 하는 공의 위치에 대한 수치를 Matlab을 통해 해석하고 해를 찾는 여러 방법의 장단점 파악

한쪽에서 공을 던지고 공이 포물선 운동을 하며 날아갈때 (공이 날아가는 위치를 나타내는 포물선의 함수를 알고있다.) 공이 떨어 질 위치를 Matlab을 이용하여 수치해석을 통해 찾는다. 매트랩은 Bisection, Fixed point iteraion, Muller, Newton-Rhapson, Secant 법등을 이용해 수치를 해석하는데 각각 방법의 장단점 등을 파악하여 표를 만들어 정리하였다.
27 페이지
한컴오피스
최초등록일 2008.06.23 최종저작일 2008.05
27P 미리보기
포물선 운동을 하는 공의 위치에 대한 수치를 Matlab을 통해 해석하고 해를 찾는 여러 방법의 장단점 파악
  • 미리보기

    소개

    한쪽에서 공을 던지고 공이 포물선 운동을 하며 날아갈때 (공이 날아가는 위치를 나타내는 포물선의 함수를 알고있다.) 공이 떨어 질 위치를 Matlab을 이용하여 수치해석을 통해 찾는다.
    매트랩은 Bisection, Fixed point iteraion, Muller, Newton-Rhapson, Secant 법등을 이용해 수치를 해석하는데 각각 방법의 장단점 등을 파악하여 표를 만들어 정리하였다.

    목차

    1. Aerospace engineers sometimes compute the trajectories of projectiles such as rockets. A related problem deals with the trajectory of a thrown ball.
    The trajectory of a ball thrown by a right fielder is defined by the (x, y) coordinates as displayed in the figure. The trajectory can be modeled as
    1) Plot the position of a thrown ball as a function of thrown angle and just estimate the root graphically.
    2) Estimate the initial thrown angle by using the bisection and the false-position methods for the bracketing method, and the Newton-Raphson, the secant, and the Müler methods for the open method.
    3) Estimate the distance x if thrown angle is pi/6 by using the fixed-point iteration methods. Is it possible? Make a discussion about this problem.
    4) Plot the per cent approximate (relative) errors as a function of iteration for all methods. (Note that in your error graph, the scale of y-axis designating the error better to be expressed in logarithmic for a distinct comparison among various methods.)
    5) Discuss about the most efficient numerical method to determine your answer and provide justification for your choice of method.

    2. Devise your own problems to describe the pros and cons of each method you have learned, and solve them and discuss.
    1) Just estimate the root graphically.
    2) Bisection
    3) False position mth
    4) Newton-Raphson mtd
    5) Secant
    6) Muller mtd
    7) Fixed point mtd
    8) 결론

    본문내용

    (2) Estimate the initial thrown angle by using the bisection and the false-position methods for the bracketing method, and the Newton-Raphson, the secant, and the Müler methods for the open method.
    아래에서 여러 가지 method를 이용해 위의 함수식을 계속 사용 할 것이기 때문에 함수식을 m파일화해서 나만의 함수로 만들었고, 각 방법의 m-file은 교수님이 올려 주신 것을 이용했다.

    * 내가 만든 함수

    < Bracking mth >
    & Bisection mth
    위의 함수 hhj1.m을 이용하여 Bisection을 실행했다.

    처음에 이러한 error가 발생했고, m-file에서 이런 error가 뜨는 이유를 찾아보았다.
    ----------------------------------------------
    a(1)=a; b(1)=b;
    ya(1) = feval(fun,a(1)); yb(1) = feval(fun,b(1));
    if ya(1)*yb(1)>0.0
    error('Function has same sign at end points')
    -------------------------------------------------
    즉, bisection의 양 구간의 함수값의 곱으로 해를 찾는 특징 때문에 처음에 범위로 지정한 a와 b를 hhj1함수에 넣었을 때 그 함수값의 곱이 같은 부호로 나와서 error가 발생한 것이었다.
    b의 범위를 1번문제에서 짐작한 두해의 가운데 속해있는 값으로 잡고 다시 실행해 보았다.
    >> bisect('fun1', 0, 0.7, 0.00001, 50)

    <중 략>

    17번의 반복후에 값을 찾았고, y값이 -0.0003이되는(error가 0.0001보다 작아야한다는 것을 만족시키는) 해는 0.6604였다.
    1번의 해와 거의 일치했다.
    >> bisect('fun1', 0.7, 1, 0.00001, 50)

    참고자료

    · 저희 교수님이 만드신 m-file과 report문제
  • 자료후기

      Ai 리뷰
      판매자가 제공한 자료는 체계적인 구성으로 되어 있어 복잡한 내용을 과제에 쉽게 활용 할 수 있었습니다. 앞으로도 이러한 좋은 자료들이 많이 등록되기를 기대합니다.
    • 자주묻는질문의 답변을 확인해 주세요

      해피캠퍼스 FAQ 더보기

      꼭 알아주세요

      • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
        자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
        저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
      • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
        파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
        파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
    문서 초안을 생성해주는 EasyAI
    안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
    저는 아래와 같이 작업을 도와드립니다.
    - 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
    - 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
    - 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
    이런 주제들을 입력해 보세요.
    - 유아에게 적합한 문학작품의 기준과 특성
    - 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
    - 작별인사 독후감
    해캠 AI 챗봇과 대화하기
    챗봇으로 간편하게 상담해보세요.
    2025년 07월 26일 토요일
    AI 챗봇
    안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
    4:50 오후