• AI글쓰기 2.1 업데이트
BRONZE
BRONZE 등급의 판매자 자료

Organocatalyst, Aldol condensation of acetone with isobutylaldehyde

"Organocatalyst, Aldol condensation of acetone with isobutylaldehyde"에 대한 내용입니다.
9 페이지
어도비 PDF
최초등록일 2024.08.22 최종저작일 2024.05
9P 미리보기
Organocatalyst, Aldol condensation of acetone with isobutylaldehyde
  • 이 자료를 선택해야 하는 이유
    이 내용은 AI를 통해 자동 생성된 정보로, 참고용으로만 활용해 주세요.
    • 전문성
    • 논리성
    • 명확성
    • 유사도 지수
      참고용 안전
    • 🔬 유기촉매를 이용한 비대칭 합성의 상세한 메커니즘 설명
    • 🧪 실험 과정과 결과를 체계적으로 분석한 연구 문서
    • 💡 asymmetric synthesis의 이론과 실제 응용 사례 제공
    본 문서는 PDF문서으로 복사 및 편집이 불가합니다.

    미리보기

    소개

    "Organocatalyst, Aldol condensation of acetone with isobutylaldehyde"에 대한 내용입니다.

    목차

    1. Title
    2. Purpose
    3. Theory
    4. Chemical and Apparatus
    5. Procedure
    6. 실험 시 주의해야 할 사항
    7. Data& Result
    8. Discussion
    9. Conclusion
    10. Reference

    본문내용

    1. Title: Organocatalyst: Aldol reaction of acetone with isobutylaldehyde

    2. Purpose: Organocatalyst를 이용하여 isobutylaldehyde 와 아세톤으로부터 선택적인 알돌 첨가 반응을 한다

    3. Theory
    i. Asymmetric synthesis(정의 및 메커니즘)
    Asymmetric synthesis는 다른 이름으로 enantioselective synthesis라고 하기도 한다. IUPAC에서는 Asymmetric synthesis를 1개 이상의 새로운 chirality가 생성되고 두 이성질체의 수득률이 서로 다르게 나타나는 것으로 정의했다. 즉, 서로 다른 두 stereoisomer가 비슷한 비율로 생성되는 racemic mixture와 달리, 비대칭합성의 결과물은 한 쪽 생성물이 우세하게 나온다. 생체 내에서 서로 다른 이성질체가 서로 다른 반응, 효과를 나타내기 때문에 Asymmetric synthesis는 약물 합성에서 특히 중요하다. 예를 들어 진통제로 사용되는 ibuprofen의 S-form만을 선택적으로 합성해서 판매하는 Dex-ibuprofen은 asymmetric synthesis의 대표적인 예시라고 할 수 있다.

    <중 략>

    이번 실험에서는 L-proline이 class 1 aldolase enzyme과 유사한 역할을 하며 acetone과 isobutane의 aldol condensation을 촉매한다. 반응 과정에서 iminium ion 전구체가 형성되며, iminium ion은 반응성이 좋은 enamine 중간체를 형성한다.

    참고자료

    · Fulmer, G. R., Miller, A. J., Sherden, N. H., Gottlieb, H. E., Nudelman, A., Stoltz, B. M., ... & Goldberg,
    · K. I. (2010). NMR chemical shifts of trace impurities: common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist. Organometallics, 29(9), 2176- 2179.
    · Elizabeth L. Noey, et al., (2015) Origins of stereoselectivity in evolved ketoreductases, Proceedings of the National Academy of Sciences,
    · List, B., Lerner, R.A., & Barbas, C.F. (2000). Proline-Catalyzed Direct Asymmetric Aldol
    · Reactions. Journal of the American Chemical Society, 122, 2395-2396.
  • AI와 토픽 톺아보기

    • 1. Asymmetric synthesis
      Asymmetric synthesis is a powerful tool in organic chemistry that allows for the selective production of one enantiomer of a chiral molecule over the other. This is particularly important in the pharmaceutical industry, where the different enantiomers of a drug can have vastly different biological activities and effects. Asymmetric synthesis can be achieved through the use of chiral catalysts, chiral auxiliaries, or other enantioselective methods. The development of new and more efficient asymmetric synthetic methods is an active area of research, as it allows for the production of valuable chiral compounds with high purity and yield. Advances in this field have had a significant impact on the synthesis of complex natural products, pharmaceuticals, and other important chemicals.
    • 2. Chiral catalyst
      Chiral catalysts are a crucial component of asymmetric synthesis, as they enable the selective formation of one enantiomer of a product over the other. These catalysts can be metal-based, organometallic, or purely organic in nature, and their design and development is an active area of research. Effective chiral catalysts must be able to selectively bind and activate the reactants in a way that favors the formation of the desired enantiomer, while also being stable, efficient, and easy to handle. The discovery of new chiral catalysts with improved selectivity, activity, and scope has been instrumental in advancing the field of asymmetric synthesis and enabling the production of valuable chiral compounds. Continued progress in this area will be essential for meeting the growing demand for enantiopure materials in the pharmaceutical, agrochemical, and other industries.
    • 3. Organocatalyst
      Organocatalysts are a class of catalysts that are composed entirely of organic molecules, without the use of any metal atoms. These catalysts have gained significant attention in recent years due to their potential advantages over traditional metal-based catalysts, such as their often lower cost, reduced toxicity, and increased functional group tolerance. Organocatalysts can be designed to promote a wide range of organic transformations, including asymmetric reactions, through a variety of activation modes, such as hydrogen bonding, Lewis acid/base interactions, and covalent bonding. The development of new and more efficient organocatalysts has been an active area of research, as they offer the potential to enable more sustainable and environmentally friendly synthetic routes. While organocatalysts may not yet match the activity and selectivity of some metal-based catalysts, their continued advancement is likely to lead to their increased adoption in both academic and industrial settings.
    • 4. Reaction mechanism
      Understanding the reaction mechanism is crucial for the rational design and optimization of organic transformations, including those involving asymmetric synthesis and catalysis. Elucidating the step-by-step sequence of elementary steps that occur during a reaction, as well as the intermediates and transition states involved, can provide valuable insights into the factors that govern the reactivity, selectivity, and efficiency of a process. Mechanistic studies can involve a combination of experimental techniques, such as kinetic analysis, spectroscopic methods, and isotopic labeling, as well as computational modeling and simulations. By gaining a deeper understanding of reaction mechanisms, chemists can develop more effective strategies for catalyst design, reaction optimization, and the synthesis of complex target molecules. Continued progress in this area will be essential for advancing the field of organic chemistry and enabling the development of new and improved synthetic methodologies.
    • 5. Experimental procedure
      The experimental procedure is a critical component of any successful organic synthesis, as it outlines the step-by-step instructions for carrying out a reaction or series of reactions. A well-designed and thoroughly tested experimental procedure is essential for ensuring the reproducibility and reliability of the results, as well as for facilitating the transfer of knowledge and techniques between researchers. Factors such as the choice of solvents, reagents, and reaction conditions, the order and timing of addition steps, the use of appropriate purification and characterization techniques, and the proper handling of air- or moisture-sensitive materials must all be carefully considered and optimized. The development of robust and efficient experimental procedures is an ongoing challenge, particularly for complex multi-step syntheses or reactions involving sensitive or unstable intermediates. Continuous improvement and refinement of experimental protocols, informed by a deep understanding of the underlying chemistry, is essential for advancing the field of organic synthesis and enabling the production of valuable target molecules.
    • 6. Characterization
      Characterization is a crucial step in the synthesis of organic compounds, as it provides essential information about the identity, purity, and properties of the target molecule. A wide range of analytical techniques, such as nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry, infrared (IR) spectroscopy, and X-ray crystallography, are commonly employed to characterize the structure, composition, and physical properties of organic compounds. The careful and thorough characterization of reaction products is essential for ensuring the reliability and reproducibility of synthetic procedures, as well as for identifying and addressing any potential impurities or side products. Furthermore, the characterization data can provide valuable insights into the reaction mechanisms and the factors that influence the selectivity and efficiency of the synthetic process. Continued advancements in analytical instrumentation and data analysis methods are expected to further enhance the capabilities and accessibility of characterization techniques, enabling more comprehensive and precise analysis of organic compounds.
    • 7. Yield and purification
      Achieving high yields and efficient purification of the desired product are critical goals in organic synthesis, as they directly impact the overall efficiency, cost-effectiveness, and scalability of the synthetic process. Maximizing the yield of a reaction involves optimizing the reaction conditions, such as the choice of reagents, solvents, temperatures, and reaction times, to ensure that the desired transformation proceeds as efficiently as possible. Effective purification strategies, such as recrystallization, column chromatography, or distillation, are then necessary to isolate the target compound from any side products, unreacted starting materials, or other impurities. The development of new and improved purification techniques, as well as the optimization of existing methods, is an active area of research in organic chemistry. Achieving high yields and effective purification is essential for the successful synthesis of valuable organic compounds, particularly in the pharmaceutical and fine chemicals industries, where purity and scalability are of utmost importance. Continued progress in this area will be crucial for advancing the field of organic synthesis and enabling the production of complex target molecules with high efficiency and reliability.
  • 자료후기

      Ai 리뷰
      유기 촉매제를 이용한 비대칭 합성 실험의 원리와 결과를 체계적으로 설명하고 있으며, 다양한 분석 데이터를 통해 생성물의 특성을 자세히 확인할 수 있습니다.
    • 자주묻는질문의 답변을 확인해 주세요

      해피캠퍼스 FAQ 더보기

      꼭 알아주세요

      • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
        자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
        저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
      • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
        파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
        파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
    문서 초안을 생성해주는 EasyAI
    안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
    저는 아래와 같이 작업을 도와드립니다.
    - 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
    - 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
    - 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
    이런 주제들을 입력해 보세요.
    - 유아에게 적합한 문학작품의 기준과 특성
    - 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
    - 작별인사 독후감
    해캠 AI 챗봇과 대화하기
    챗봇으로 간편하게 상담해보세요.
    2026년 01월 26일 월요일
    AI 챗봇
    안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
    9:23 오전