• LF몰 이벤트
  • 파일시티 이벤트
  • 서울좀비 이벤트
  • 탑툰 이벤트
  • 닥터피엘 이벤트
  • 아이템베이 이벤트
  • 아이템매니아 이벤트

[A 수치해석실험] 연습문제 2장 3장 (각각 두 문제씩 총 4문제)

vksoa
개인인증판매자스토어
최초 등록일
2023.01.13
최종 저작일
2020.10
22페이지/한글파일 한컴오피스
가격 1,500원 할인쿠폰받기
다운로드
장바구니

* 본 문서(hwp)가 작성된 한글 프로그램 버전보다 낮은 한글 프로그램에서 열람할 경우 문서가 올바르게 표시되지 않을 수 있습니다. 이 경우에는 최신패치가 되어 있는 2010 이상 버전이나 한글뷰어에서 확인해 주시기 바랍니다.

소개글

수치해석 실습 연습문제 2장(방정식의 근), 3장(선형연립방정식)에서 각각 두 개씩 총 4문제. (고찰O)
주어진 문제의 지배방정식을 유도하고 DEV C++을 사용해서 코딩, 결과 사진과 함께 분석한 내용을 기재함.

목차

1. 2장(8번, 14번)
2. 3장(28번, 34번)

본문내용

2장-연습문제(8번, 14번)

[문제 8] 어떤 오리피스 유량계의 유량계수()는 다음의 실험식을 만족한다.

는 교축비(관의 지름과 오리피스 지름의 비)이고, 는 레이놀즈 수이다. 여기서 유량계수 이고, 레이놀즈 수는 일 때 초기구간 에서 방정식을 만족하는 교축비()를 이분법을 사용하여 유효숫자 4자리까지 정확히 구하라.

<풀이>

이분법을 사용,

이라 할 때,
,
,

이므로 r1과 r2 사이에 근이 존재한다.
,

이므로 r2와 r3 사이에 근이 존재한다.

따라서 r1에 r3의 값을 저장하고 위의 계산을 반복한다. (범위 )

<중 략>

<고찰>

이분법을 사용하여 연습문제 8번을 풀었다. 위의 코딩을 보면 이분법의 프로그램 코드가 굉장히 간단하다는 것을 알 수 있다. 또한 매 반복계산마다 오차범위가 반으로 줄어들어 오차의 정도를 파악할 수 있다는 이점을 가지고 있다. 이는 계산 결과를 보면 알 수 있다. 하지만 계산시간이 많이 요구되고 수렴속도가 느려 일반적으로는 잘 사용되지 않는다. 이번 문제의 경우 29번의 반복수행 만에 방정식의 근사해를 얻을 수 있었지만, 복잡한 문제에서는 반복횟수가 기하학적으로 늘어나게 된다. 따라서 이런 경우 이분법 보다는 선형보간법이나 뉴턴법을 사용하여 문제를 푸는 것이 더 효율적이다. 선형보간법을 사용할 경우 반복횟수가 줄어들 뿐만 아니라 백분율 상대오차도 빠르게 감소한다.

참고 자료

없음
vksoa
판매자 유형Bronze개인인증

주의사항

저작권 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
환불정책

해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.

파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

이런 노하우도 있어요!더보기

최근 본 자료더보기
탑툰 이벤트
[A 수치해석실험] 연습문제 2장 3장 (각각 두 문제씩 총 4문제)
  • 레이어 팝업
AI 챗봇
2024년 05월 26일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
5:22 오후
New

24시간 응대가능한
AI 챗봇이 런칭되었습니다. 닫기