BRONZE
BRONZE 등급의 판매자 자료

[TU Delft] Offshore Wind Farm Design Final Report

"[TU Delft] Offshore Wind Farm Design Final Report"에 대한 내용입니다.
79 페이지
어도비 PDF
최초등록일 2018.07.23 최종저작일 2018.03
79P 미리보기
[TU Delft] Offshore Wind Farm Design Final Report
  • 미리보기

    목차

    1. Project Overview 7
    1.1 Project Name - Project Anima 7
    1.2 General assumption 7
    1.3 Project Workflow 7

    PART I. SITE SELECTION / TRADE-OFF STUDY 9
    2. Site Selection 9
    2.1 Preliminary consideration for site selection 9
    2.1.1 Economic basis 9
    2.1.2 Pre-screening criteria 9
    2.2 Criteria for site selection 9
    2.2.1 Category of criteria 9
    2.2.2 Distance to the existing infrastructure 10
    2.2.3 Water depth 10
    2.2.4 Soil, Wave, Water properties 10
    2.2.5 Distance to the closest port 10
    2.2.6 Port capacity 10
    2.2.7 Mean wind speed (10 years) 10
    2.2.8 Habitants e.g. marine creature and bird population 11
    2.2.9 Visual pollution 11
    2.2.10 Restriction to helicopter transport nearby 12
    2.2.11 Shipping lane 12
    2.2.12 Data accessibility 12
    2.3 Multi-Criteria Analysis 12
    2.3.1 Summary of Results 12
    2.3.2 Validation of the results 13
    2.4 Preferred sites 14
    3. Annual Energy Yield Calculation 16
    3.1 Environmental Data collection (from ARGOSS) 16
    3.2 Turbine Power Curves Data 16
    3.3 Correction of the height 17
    3.4 Annual Energy Production (AEP) 18
    3.5 Capacity Factor 20
    3.6 Consideration of Wake Effects 21
    3.6.1 Wind rose 21
    3.6.2 Consideration of spacing 22
    3.6.3 Annual Energy Production per unit area 22

    PART II. WIND FARM PRELIMINARY DESIGN 24
    4. Design Load Calculation 24
    4.1 Design Wind (50 years, 5 years, Cut-out) 24
    4.2 Design Wave (50 years, 5 years) 24
    4.3 Design Water Level (50 years) 25
    4.4 Design Current (5 years) 26
    4.5 Design Load combination 27
    5. Natural Frequency Assessment 29
    6. BEM (Blade Element/Momentum) 31
    6.1 Aerodynamic thrust using TURCAL 31
    6.2 Results of Aerodynamic drag calculation 32
    7. Hydrodynamic Loads Calculation (Morison’s equation) 35
    7.1 Water Depth 35
    7.2 Peak period 35
    7.3 Marine growth 36
    7.4 Load factor 36
    7.5 Dtp (outer diameter of the transition piece) 36
    7.6 ZTP;bot (elevation bottom transition piece with respect to SWL) 37
    7.7 Zmpcone;top & Zmpcone;bot (elevation top and bottom of the conical part of the monopile with respect to SWL) 37
    7.8 CD & CM 37
    7.9 Result hydrodynamic forces 38
    7.10 Directional wave loading 38
    8. Foundation stability and stress checks 40
    8.1 Stability check 41
    8.1.1 Overturning moments (see table 9-1 below) 41
    8.1.2 Base shear 41
    8.1.3 Required length of the foundation pile 41
    8.2 Assessment of Stress-Strain Condition of the monopile 42
    8.2.1 Stress check 43
    9. Results of preliminary design 44
    9.1 Aerodynamic load calculation 44
    9.2 Overturning Moment and Shear Forces 44
    9.3 Total mass of the support structure 44

    PART III. WIND FARM OPERATION & COST EFFECTIVENESS 45
    10. Wind Farm Layout and Efficiency 45
    10.1 Wake model 45
    10.2 Procedure of efficiency estimation 45
    10.3 Upscale directional wind profiles 45
    10.4 Directional weibull distribution - wind rose 47
    10.5 Layout and wake loss per spacing 47
    10.6 Total farm efficiency (function of spacing) 47
    10.7 Wind farm Electrical infrastructure 49
    11. Operation and Maintenance (O&M) 51
    11.1 Weather downtime 51
    11.2 Type of maintenance 51
    11.2.1 Corrective Maintenance 51
    11.2.2 Scheduled Maintenance 51
    11.3 O&M Cost Drivers 52
    11.3.1 Distance to shore 52
    11.3.2 Weather condition 52
    11.4 Condition based monitoring 53
    12. Wind Farm Project Management Plan 54
    13. Preliminary Economic Assessment 56
    13.1 Total investment costs per spacing 57
    13.2 Total energy yield and cost effectiveness during life time 57
    14. Recommendations 58
    15. References 59

    본문내용

    This report is intended to fulfil the assignment requirement of OE44120 Offshore Wind Farm Design
    2017/2018 Q3 coursework from Maritime, Material and Mechanical Engineering (3mE) Faculty at
    Technische Universiteit Delft, the Netherlands.
    Within this report the selection of the preferred site (section 2) and of the turbine (section 3) are
    discussed. Then extreme load cases are specified and investigated (section 4), which are used for the
    aerodynamic (section 6) and hydrodynamic (section 7) loads. With the obtained shear and moment
    forces a foundation and stress assessment has been performed (section 8) for the selected turbine.
    Next, a general layout is made for the project and the efficiency is calculated using a simplified model
    (section 10). Different Operation & Maintenance aspects are viewed in (section 11) and a project
    management plan is provided (section 12) that briefly discusses the installation plan. Finally, a
    preliminary economic assessment is performed for three different layouts (section 13).

    참고자료

    · Ahn D., Sung-chul Shin, Soo-Young Kim, Hicham Kharoufi, Hyun-cheol Kim, July 2016. Comparative evaluation of different offshore wind turbine installation vessels for Korean west-south wind farm
    · Bivol I., Jeffcoate P., Johanning L. and Nicoll R., 2017, “FloWave: A tank-scale validation of ProteusDS dynamic analysis tool for floating tidal”
    · Bright Hub, 2010, Optimum Wind Turbine Spacing, Accesed at http://www.brighthub.com/environment/renewable-energy/articles/97151.aspx on 26 Feb 2018
    · Caires S., 2011, “Extreme Value Analysis: Still Water Level”, JCOMM Technical Report No.58
    · Desmond C. et al , 2016, J. Phys.; Description of an 8 MW reference wind turbine. Conf. Ser. 753 092013
    · Dewan A., 2014, “Logistic & Service Optimization for O&M Offshore Wind Farms” - Model Development and Output Analysis, Delft University of Technology
    · DNV, 2013, DNV-OS-J101, “Design of Offshore Wind Structures”, Det Norske Veritas AS
    · DNV GL, 2016a, DNVGL-ST-0126, “Support structures for wind turbines”, April 2016
    · DNV GL, 2016b, DNVGL-ST-0437, “Loads and Site conditions for wind turbines”. November 2016
    · Gustavsson A., Nyberg E., 2014, “Maintenance Optimization of Offshore Wind Power” - Concept Development for Future Cost Reduction, 2014
    · Netherlands Enterprise Agency, 2016, “Borselle Wind Farm Zone; Wind Farm Sites I and II”, April 2016
    · Netherlands Enterprise Agency, 2017a, “Helicopter accessibility of oil & gas platforms near the offshore wind farm sites Hollandse Kust (zuid and noord)” , June 2017
    · Netherlands Enterprise Agency, 2017b, “Hollandse Kust (Zuid) Wind Farm Zone; Wind Farm Sites I and II”, October 2017
    · NoordzeeWind, 2010, “Operations Report 2009”, OWEZ_R_000_20101112, November 2010
    · Philips J., Fitch-Roy O., Reynolds P. & Gardner, P. 2013. A Guide to UK Offshore Wind Operations and Maintenance. GL Garrad Hassan.
    · Pijkeren L., Hoefakker B., 2012, “Offshore Windfarm Egmond aan Zee 5 years of Operation,” MEP workshop, Ijmujiden, December 2012
    · Schachner J., 2004, “Power Connections for Offshore Wind Farms”, Diploma Thesis, Delft University of Technology, Netherlands
    · Siemens AG, 2015, Wind Turbine-3.6-120: Technical specifications [pdf file]. Accessed at https://www.siemens.com/content/dam/internet/siemens-com/global/market-specific-solutions/wind/data_sheets/data-sheet-wind-turbine-swt-3-6-120.pdf on 26 Feb 2018.
    · The Dutch Ministry of Infrastructure and the Environment and The Ministry of Economic Affairs, 2014,“White Paper on Offshore Wind Energy, Partial review of the National Water Plan Holland Coast and are north of the Wadden Islands, September 2014
    · Vestas Wind Systems A/S, 2004, General Specification: V90 - 3MW [pdf file]. Accessed at http://www.gov.pe.ca/photos/sites/envengfor/file/950010R1_V90-GeneralSpecification.pdf on 26 Fed 2018.
    · Vestas Wind Systems A/S, 2012, V164 - 8MW [pdf file]. Accessed at http://www.homepages.ucl.ac.uk/~uceseug/Fluids2/Wind_Turbines/Turbines/V164-8MW.pdf on 26 Feb 2018.
    · Volund P., Pedersen P. H. , and Ter-Borch P. E., 2004 “165 MW nysted offshore wind farm,” ENERGIEE@, Denmark
    · Wagenaar J.W., Eesen P.J., 2010, “Current Profiles at the Offshore Wind Farm Egmond aan Zee”, ECN-E--10-076, Energy research Centre of the Netherlands, November 2010
    · Zywicki J., Dymarski P., Ciba E. and Dymarski C., 2017, “Design of Structure of Tension Leg Platform for 6MW Offshore Wind Turbine Based on FEM Analysis”, Polish Maritime Research Special Issue 2017 SI(93) 2017 Vol. 24, pp.230-241
  • 자료후기

    Ai 리뷰
    지식판매자가 등록한 자료는 과제에 직접 활용할 수 있는 유용한 내용이 많아, 큰 도움이 되었습니다. 앞으로도 계속 좋은 자료 부탁드립니다! 감사합니다.
    왼쪽 화살표
    오른쪽 화살표
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 05월 12일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
12:37 오전