· Deville Cavellin, et al., “Investigating the use of portable air pollution sensors to capture the spatial variability of traffic-related air pollution”, Environ. Sci. Technol., 50, 2016, pp.313~320.
· Polidori, A., et al., “Laboratory Evaluation of Low-cost Air Quality Sensors - Laboratory Setup and Testing Protocol”, Environ. Sci. Technol. 47, 2016, pp.11369 ~11377.
· Sousan, S., et al., “Evaluation of the alphasense optical particle counter and the grimm portable aerosol spectrometer”, Aerosol. Sci. Technol., 50, 2016, pp.1352~1365.
· Sousan, S., et al., “Inter-comparison of low-cost sensors for measuring the mass concent -ration of occupational aerosols”, Aerosol. Sci. Technol., 50, 2016, pp.462~473.
· Mannucci, P.M., et al., “Effects on health of air pollution: a narrative review”, Intern. Emerg. Med., 10(6), 2015, pp.657~662.
· Cropper, P.M., et al., “A compact gas chromatograph and pre-column concentration system for enhanced in-field separation of levoglucosan and other polar organic compounds”, J. Chromatogr., A1417, 2015, pp.73~78.
· Van den Bossche, J., et al., “Mobile monitoring for mapping spatial variation in urban air quality: development and validation of a methodology based on an extensive dataset”, Atmos. Environ. 105, 2015, pp.148~161.
· Jiao, W., et al., “Field assessment of the village green project: an autonomous community air quality monitoring system” Environ. Sci. Technol., 49, 2015, pp.6085~6092.
· Wang, Y., et al., ‘Laboratory evaluation and calibration of three low-cost particle sensors for particulate matter measurement“, Aerosol. Sci. Technol., 49, 2015, pp.1063~1077.
· Zhao, Y., et al., “Size-resolved ultrafine particle deposition and brownian coagulation from gasoline vehicle exhaust in an environmental test chamber”, Environ. Sci. Technol., 49, 2015, pp.12153~12160.
· Heck, J.E., et al., “Childhood cancer and traffic-related air pollution exposure in pregnancy and early life”, Environ. Health Perspect., 121, 2013, pp.1385~1391.
· Mead, M.I., et al., “The use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks”, Atmos. Environ., 70, 2013, pp.186~203.
· Northcross, A.L., et al., “A low-cost particle counter as a realtime fine-particle mass monitor”, Environ. Sci. Process. Impacts, 15, 2013, pp.433~439.
· Papapostolou, V., et al., “Development and characterization of an exposure generation system to investigate the health effects of particles from fresh and aged traffic emissions”, Air Qual. Atmos. Health, 6, 2013, pp.419~429.
· Pikelnaya, O., et al., “Imaging doas detection of primary formaldehyde and sulfur dioxide emissions from petrochemical flares”, J. Geophys. Res. Atmos., 118, 2013, pp.8716~8728.
· Wei, W., et al., “Standard formaldehyde source for chamber testing of material emissions: model development, experimental evaluation, and impacts of environmental factors” Environ. Sci. Technol., 47, 2013, pp.7848~7854.
· Weichenthal, S., et al., “Traffic related air pollution and acute changes in heart rate variability and respiratory function in urban cyclists”, Environ. Health Perspect., 119, 2011, pp.1373~1378.
· Hagler, G.S.W., et al., “High-resolution mobile monitoring of carbon monoxide and ultrafine particle concentrations in a near-road environment”, J. Air & Waste Manag. Assoc. 60, 2010, pp.328~336.
· Wang, C., et al., “Metal oxide gas sensors: sensitivity and influencing factors’, Sensors, 10, 2010, pp.2088~2106.
· Sohn, J.H., et al., “Characterisation of humidity dependence of a metal oxide semi -conductor sensor array using partial least squares”, Sensors Actuators, 131, 2008, pp.230~235.
· Austin, C.C., et al., “Cross-sensitivities of electrochemical detectors used to monitor worker exposures to airborne contaminants: false positive responses in the absence of target analytes”, J. Environ. Monit., 8, 2006, pp.161~166.
· Chakrabarti, B., et al., “Performance evaluation of the active-flow personal DataRAM PM-2.5 mass monitor(Thermo Anderson pDR-1200) designed for continuous personal exposure measurements”, Atmos. Environ., 38, 2004, pp.3329~3340.
· Cocker, D.R., et al., “State-of-the-art chamber facility for studying atmospheric aerosol chemistry”, Environ. Sci. Technol., 35, 2001, pp.2594~2601.
· Lin, L., et al., “Review of recent advances in detection of organic markers in fine particulate matter and their use for source apportionment”, J. Air & Waste Manag. Assoc. 60(1), 2010, pp.3~25.
· Williams, B.J., et al., “In situ measurements of gas/particle-phase transitions for atmo -spheric semivolatile organic compounds”, Proc. Natl. Acad. Sci., 107(15), 2010, pp.6676~6681.
· Williams, B.J., et al., “Major components of atmospheric organic aerosol in southern California as determined by hourly measurements of source marker compounds”, Atmos. Chem. Phys., 10(23), 2010, pp.11577~11603.
· Bari, M.A., et al., “Wood smoke as a source of particle-phase organic compounds in residential areas”, Atmos. Environ., 43(31), 2009, pp.4722~4732.
· Iinuma, Y., et al., “A highly resolved anionexchange chromatographic method for deter -mination of saccharidic tracers for biomass combustion and primary bio-particles in atmo -spheric aerosol”, Atmos Environ., 43(6), 2009, pp.1367~1371.
· Lin, L., et al., “Gas chromatographic analysis of organic marker compounds in fine particulate matter using solid-phase microextraction”, J. Air & Waste Manag. Assoc. 57(1), 2007, pp.53~58.
· Vasileios Papapostolou, et al., “Development of an environmental chamber for evaluating the performance of low-cost air quality sensors under controlled conditions”, Atmospheric Environment, 171, 2017, pp.82~90.