· Stefan Schmid, et.al., Studying the fate of non-volatile organic compounds in a
· commercial plasma air purifier, J. Hazard. Mater., 256–257, 2013, pp.76~83.
· 24
· D. Gao, et al., Experimental study on indoor air cleaning technique of nano-titania
· catalysis under plasma discharge, Plasma Sci. Technol., 10, 2008, pp.216~220.
· F. Holzer, U. Roland, F.D. Kopinke, Combination of non-thermal plasma and hete
· -rogeneous catalysis for oxidation of volatile organic compounds Part 1. Accessibility of
· the intra-particle volume, Appl. Catal., 38, 2002, pp.163~181.
· U. Roland, F. Holzer, F.D. Kopinke, Improved oxidation of air pollutants in a non
· -thermal plasma, Catal. Today, 73, 2002, pp.315~323.
· C. Subrahmanyam, A. Renken, L. Kiwi-Minsker, Novel catalytic non-thermal plasma
· reactor for the abatement of VOCs, Chem. Eng. J., 134, 2007, pp.78~83.
· C. Subrahmanyarn, A. Renken, L. Kiwi-Minsker, Novel catalytic dielectric barrier
· discharge reactor for gas-phase abatement of isopropanol, Plasma Chem. Process, 27, 2007,
· pp.13~22.
· S. Schmid, M.C. Jecklin, R. Zenobi, Degradation of volatile organic compounds in a
· non-thermal plasma air purifier, Chemosphere, 79, 2010, pp.124~130.
· Sneha Samal, Thermal plasma technology: The prospective future in material
· processing, J. Clean. Product., 142, 2017, 3131~3150
· M. Magureanu, et.al., Improved performance of non-thermal plasma reactor during
· decomposition of trichloroethylene: optimization of the reactor geometry and intro -duction
· of catalytic electrode, Appl. Catal., 74, 2007, pp.270~277.
· H.H. Kim, S.M. Oh, A. Ogata, S. Futamura, Decomposition of gas-phase benzene
· using plasma-driven catalyst (PDC) reactor packed with Ag/TiO2 catalyst, Appl. Catal. B:
· Environ. 56 (2005) 213–220.
· K. Hyun-Ha, et.al., Comparative assessment of different non-thermal plasma reactors
· on energy efficiency and aerosol formation from the decomposition of gas-phase benzene,
· IEEE Trans. Ind. Appl., 41, 2005, pp.206~214.
· C. Ayrault, et.al., Oxidation of 2-heptanone in air by a DBD-type plasma generated
· within a honey-comb monolith supported Pt-based catalyst, Catal. Today, 89, 2004,
· pp.75~81.
· A. Amantonico, P.L. Urban, R. Zenobi, Facile analysis of metabolites by capillary
· electrophoresis coupled to matrix-assisted laser desorption/ionization mass spectrometry
· using target plates with polysilazane nanocoating and grooves, Analyst, 134, 2009,
· pp.1536~1540.
· W.J. Kowalski, W.P. Bahnfleth, T.S. Whittam, Bactericidal effects of high airborne
· ozone concentrations on Escherichia coli and Staphylococcus aureus, Ozone Sci. Eng., 20,
· 1998, pp.205~221.
· 25
· N.D. Vaze, et al., Inactivation of bacteria in flight by direct exposure to non
· -thermal plasma, IEEE Trans. Plasma Sci., 38, 2010, pp.3234~3240.
· 전문화 아카데미아, “환경기술 직무사전-대기환경기술”, ISBN 89-7618-165-4, 홍문
· 관, 한국 서울, 2005년4월, pp.63~89.
· A. Averroesa, H. Sekiguchia, K. Sakamoto, Treatment of airborne asbestos and
· asbestos-like microfiber particles using atmospheric microwave air plasma, J. Hazard.
· Mater., 195, 2011, pp.405~413
· F. Turci, et.al., Fubini, A new approach to the decontamination of asbestos-polluted
· waters by treatment with oxalic acid under power ultrasound, Ultrason. Sonochem., 15,
· 2008, pp.420~427.
· C. Leonelli, et.al., Microwave thermal inertization of asbestos containing waste and its
· recycling in traditional ceramics, J. Hazard. Mater., 135, 2006, pp.149~155.
· A.J. Darnton, et.al., Estimating the number of asbestos-related lung cancer death in
· Great Britain from 1980 to 2000, Ann. Occup. Hyg., 50, 2006, pp.29~38.
· M. Fujishige, et.al., Low-temperature decomposition of sprayed-on asbestos, J. Ceram.
· Soc. Jpn. 114 (2006) 1133–1137.
· P. Plescia, et.al., Mechanochemical Treatment to recycling asbestos-containing waste,
· Waste Manage., 23, 2002, pp.209~218.
· E. Gomez, et.al., Thermal plasma technology for the treatment of wastes: a critical
· review, J. Hazard. Mater., 161, 2009, pp.614~626.
· S. Nakanishi, H. Sekiguchi, Comparison of reforming behaviors of hexane and
· isooctane in microwave steam plasma, J. Jpn. Petrol. Inst., 48, 2005, pp.22~28.
· H. Tsujimura, T. Goto, Y. Ito, Electrochemical surface nitriding of SUS-430 ferritic
· stainless steel, Mater. Sci. Eng., 355, 2003, pp.315~319.
· K.M. Green, et.al., Electronic excitation temperature profiles in an air microwave
· plasma torch, IEEE Trans. Plasma Sci., 29, 2001, pp.399~406.
· S.Y. Moon, W. Choe, Parametric study of atmospheric pressure microwave-induced
· Ar/O2 plasmas and the ambient air effect on the plasma, Phys. Plasmas., 13, 2006,
· pp.1~6.
· J. Happold, P. Lindner, R. Roth, Spatially resolved temperature measurement in an
· atmospheric plasma torch, J. Appl. Phys., 39, 2006, pp.3615~3620.
· M. Jeyaratnam, N.G. West, A Study of heat-degraded chrysotile, amosite, and
· 26
· crocidolite by X-ray diffraction, Ann. Occup. Hyg., 38, 1994, pp.137~148.
· Koizumi Masashi, Non-toxificating technology of asbestos-contained construction
· materials, J. Environ. Hi-tech., 196, 2009, pp.92~97.
· S. Hashimoto, et.al., Detoxification of asbestos-containing building material waste and
· its application to cement product, J. Ceram. Soc. Jpn., 115, 2007, pp.290~293.
· 한중일영 한자 센터: http://cafe.daum.net/hankukhanza
· 「가난대물림 일탈의 싹 식재」 : http://unihanza.slic.kr