An Application of the Rough Set Approach to Credit Rating

*성*
개인인증판매자스토어
최초 등록일
2000.06.07
최종 저작일
2000.06
8페이지/워드파일 MS 워드
가격 무료 할인쿠폰받기
다운로드
퀴즈OX 이벤트

소개글

러프집합이론(Rough Set Theory)을 이용한 신용도 평가입니다.

목차

Abstract

1. Introduction

2. Rough Sets and Neural Networks
2.1 Rough Sets

3. A Credit Rating Problem
3.1 Problem Statement
3.2 Application of the Rough Set Approach
3.3 Presentation of Rules

4. Conclusions

References

본문내용

The credit rating represents an assessment of the relative level of risk associated with the timely payments required by the debt obligation. In this paper, we present a new approach to credit rating of customers based on the rough set theory. The concept of a rough set appeared to be an effective tool for the analysis of customer information systems representing knowledge gained by experience. The customer information system describes a set of customers by a set of multi-valued attributes, called condition attributes. The customers are classified into groups of risk subject to an expert’s opinion, called decision attribute. A natural problem of knowledge analysis consists then in discovering relationships, in terms of decision rules, between description of customers by condition attributes and particular decisions. The rough set approach enables one to discover minimal subsets of condition attributes ensuring an acceptable quality of classification of the customers analyzed and to derive decision rules from the customer information system which can be used to support decisions about rating new customers.
Using the rough set approach one analyses only facts hidden in data, it does not need any additional information about data and does not correct inconsistencies manifested in data; instead, rules produced are categorized into certain and possible. A real problem of the evaluation of credit rating by a department store is studied using the rough set approach.

참고 자료

[1] Boryczka, M., and Slowinski, R., “Derivation of optimal decision algorithms from decision tables using rough sets,” Bulletin of the Polish Academy of Sciences, ser. Technical Sciences, Vol. 36, 1988, pp.252-260.
[2] Dubois, D., and Prade, H., ‘Putting rough sets and fuzzy sets together’, in Slowinski, R. (ed), Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory, Kluwer Academic, Dordrecht, 1992, pp. 203-232.
[3] Capon, N., (1982). “Credit Scoring Systems: A Critical Analysis,” Journal of Marketing, Vol.46, pp.83-88.
[4] Grzymala-Busse, J.W., ‘LERS – a system for learning from examples based on rough sets’, in Slowinski, R. (ed), Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory, Kluwer Academic, Dordrecht, 1992, pp.3-18.
[5] Kim, C.Y., Ahn, B.S, Cho, S.S., and Kim, S.H., “The Integrated Methodology of Rough Set Theory and Artificial Neural Network for Business Failure Prediction,” The Journal of MIS Research, Vol. 9, No.4, 1999, (in press).
[6] Krusinska, E., Slowinski, R. and Stefanowski, J. “Discriminant versus rough set approach to vague data analysis”, Applied Stochastic Models and Data Analysis, Vol. 8, 1992, pp.1-17.
[7] Pawlak, Z., “Rough sets,” International Journal of Information and Computer Sciences, Vol. 11, pp. 341-356.
[8] Skowron, A. and Grzymala-Busse, J.W., ‘From the rough set theory to the evidence theory’, in Fedrizzi, M., Kacpryk, J. and Yager, R.R. (eds), Advances in the Dempster-Shafer Theory of Evidence, John Wiley, New York, 1993.
[9] Siegel, P.H., de Korvin, A., & Omer, K., “Detection of irregularities by auditors: a rough set approach,” Indian Journal of Accounting, 1993, pp.44-56.
[10] Slowinski, R., & Stefanowski, J., “‘RoughDAS’ and ‘RoughClass’ software implementations of the rough set approach,” In: R. Slowinski (ed.) Intelligent Decision Support. Handbook of Applications and Advances of the Rough Sets Theory, Kluwer Academic Publishers, Dordrecht, 1992, pp.445-456.
[11] Ziarko, W., Golan, R., & Edwards, D., “An application of DATALOGIC/R knowledge discovery tool to identify strong prediction rules in stock market data,” Proceedings of AAAI Workshop on Knowledge Discovery in Databases, Washington DC. 1993.
*성*
판매자 유형Bronze개인인증

주의사항

저작권 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
환불정책

해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.

파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

찾던 자료가 아닌가요?아래 자료들 중 찾던 자료가 있는지 확인해보세요

더보기
최근 본 자료더보기
상세우측 배너
An Application of the Rough Set Approach to Credit Rating