• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

로렌츠 커브를 이용한 하둡 플랫폼의 최적화 지수 (Measuring Hadoop Optimality by Lorenz Curve)

한국학술지에서 제공하는 국내 최고 수준의 학술 데이터베이스를 통해 다양한 논문과 학술지 정보를 만나보세요.
13 페이지
기타파일
최초등록일 2025.07.18 최종저작일 2014.04
13P 미리보기
로렌츠 커브를 이용한 하둡 플랫폼의 최적화 지수
  • 이 자료를 선택해야 하는 이유
    이 내용은 AI를 통해 자동 생성된 정보로, 참고용으로만 활용해 주세요.
    • 전문성
    • 논리성
    • 실용성
    • 유사도 지수
      참고용 안전
    • 🔬 하둡 플랫폼의 성능 최적화에 대한 심층적인 기술적 접근 제공
    • 📊 로렌츠 커브를 활용한 독창적인 분산처리 성능 분석 방법론
    • 💡 빅데이터 처리 효율성 개선을 위한 실무적 인사이트 제공

    미리보기

    서지정보

    · 발행기관 : 한국통계학회
    · 수록지 정보 : 응용통계연구 / 27권 / 2호 / 249 ~ 261페이지
    · 저자명 : 김우철, 백창룡

    초록

    최근 큰 관심을 받는 빅데이터는 분산처리를 통해서만 효과적으로 처리할 수 있다. 분산처리란 주어진 쿼리를 여러대의 컴퓨터로 분할하고 각 분할된 데이터의 계산 결과를 취합하는 과정으로, 주어진 하드웨어 리소스를 효과적으로최대한 사용하는 것이 중요하다. 하둡은 이러한 분산처리를 가능하게 하는 플랫폼 중의 하나로 분산처리에 사용된컴퓨터의 개수만큼 성능 향상을 기대할 수 있는 확장성을 최대한 보장하는 매우 성공적인 플랫폼이다. 이 논문에서는 하둡 플랫폼이 얼마나 최적화 되어있는지에 대한 객관적이고 계량적인 지수를 제공함으로써 주어진 하둡 플랫폼의 효율성을 측정한다. 방법론적으로는 로렌츠 커브를 이용하여 하드웨어 리소스들이 얼마나 잘 균등히 배분되어 있는지 살펴보고 CPU, 디스크 일기/쓰기 및 네트워크 병목현상에 따른 비용을 감안한 최적화된 로렌츠 커브를 찾음으로써 최적화 지수를 산출한다. 바꾸어 말하면, 이러한 최적화 지수는 주어진 하둡 플랫폼이 얼마만큼의 성능 향상이 가능한지 알려주는 척도로 오랜 시간을 필요로 하는 빅테이터의 처리 속도 개선을 위한 중요한 정보를 제공한다.
    실험 자료 및 모의실험을 통해 본 논문에서 제안된 방법을 검증하였다.

    영어초록

    Ever increasing ``Big data" can only be effectively processed by parallel computing. Parallel computing refers to a high performance computational method that achieves effectiveness by dividing a big query into smaller subtasks and aggregating results from subtasks to provide an output. However, it is well-known that parallel computing does not achieve scalability which means that performance is improved linearly by adding more computers because it requires a very careful assignment of tasks to each node and collecting results in a timely manner. Hadoop is one of the most successful platforms to attain scalability. In this paper, we propose a measurement for Hadoop optimization by utilizing a Lorenz curve which is a proxy for the inequality of hardware resources. Our proposed index takes into account the intrinsic overhead of Hadoop systems such as CPU, disk I/O and network. Therefore, it also indicates that a given Hadoop can be improved explicitly and in what capacity. Our proposed method is illustrated with experimental data and substantiated by Monte Carlo simulations.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“응용통계연구”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 27일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
10:57 오전