PARTNER
검증된 파트너 제휴사 자료

작물 생육 모델을 이용한 지역단위 콩 수량 예측 (Predicting Regional Soybean Yield using Crop Growth Simulation Model)

10 페이지
기타파일
최초등록일 2025.07.12 최종저작일 2017.10
10P 미리보기
작물 생육 모델을 이용한 지역단위 콩 수량 예측
  • 미리보기

    서지정보

    · 발행기관 : 대한원격탐사학회
    · 수록지 정보 : 대한원격탐사학회지 / 33권 / 5호 / 699 ~ 708페이지
    · 저자명 : 반호영, 최덕환, 안중배, 이변우

    초록

    본 연구에서는 재배 방법, 토양 특성 등의 정보를 상세하게 수집하기 어려운 지역단위의 콩 작황을작물생육 모델을 이용하여 예측하는 방법을 개발하고자 하였다. 작물 생육 모델은 DSSAT에 포함된CROPGRO-Soybean 모델을 이용하였고, 미국의 주요 콩 생산지역인 Illinois주를 연구 사례지역으로 선택하였다. CROPGRO-Soybean 모델을 이용하여 Illinois주의 콩 수량을 예측하기 위한 첫 단계로 다양한 성숙군에 속하는 국내외 품종들을 수집하여 서울대학교농장(37.27°N, 126.99°E)에서 2년동안 파종기 실험을하여 성숙군(maturity group) I~VI까지의 성숙군별 대표 품종모수(genetic coefficients)를 추정하였다. 대표품종모수는 각 성숙군 내에 포함되어 있는 품종들의 발육을 매우 정확하게 추정하였다. 10 km×10 km 격자단위의 기상자료를 바탕으로 성숙군(3), 파종시기(3), 관개여부(2) 등을 조합하여 18가지 조건으로 2000년에서 2011년까지 수량을 각각 모의 하였다. 성숙군과 파종시기는 Illinois주를 위도에 따라 3등분하여 각각다르게 설정하였다. 관개 및 무관개 조건으로 구분하여 격자 별 모의결과로부터 Illinois주 전체 평균 모의수량을 구하여 연도 별 통계 수량과 비교한 결과 두 경우 모두 실제 수량과 큰 차이를 보일 뿐만 아니라 연차에따른 수량 변동과 증가 경향을 반영하지 못하였다. 이러한 한계를 극복하고자 처리 별 격자 별로 모의된 수량을 수량을 18개 모의 조건 별로 평균하여 구한 9개 농업지구의 연도별 수량을 독립 변수, 농업지구의 연도별 통계수량을 종속 변수로 하는 중회귀 모델을 구축하였다. 18개 모의 조건 별 수량 외에 품종 개량, 재배기술 발전 등에 따른 수량의 연차적 변화경향을 반영하기 위하여 연도를 독립변수로 추가하였으며, 중회귀모델은 농업지구와 연도별 수량 변이를 비교적 잘 예측(R2=0.61, n=108)하였다. 중회귀 모델로 추정한 9개농업지구의 연도별 수량을 농업지구별 재배 면적으로 가중 평균한 Illinois의 연도별 추정수량은 통계수량에매우 근사하였다(R2=0.80). 뿐만 아니라 모델 구축 대상연도가 아니고 가뭄으로 수량이 크게 감소한 2012 년의 예측 수량은 3006 kg ha-1로 통계수량 2890 kg ha-1과 116kg ha-1의 근사한 차이를 보였다.

    영어초록

    The present study was to develop an approach for predicting soybean yield using a crop growth simulation model at the regional level where the detailed and site-specific information on cultivation management practices is not easily accessible for model input. CROPGRO-Soybean model included in Decision Support System for Agrotechnology Transfer (DSSAT) was employed for this study, and Illinois which is a major soybean production region of USA was selected as a study region. As a first step to predict soybean yield of Illinois using CROPGRO-Soybean model, genetic coefficients representative for each soybean maturity group (MG I~VI) were estimated through sowing date experiments using domestic and foreign cultivars with diverse maturity in Seoul National University Farm (37.27°N, 126.99°E) for two years. The model using the representative genetic coefficients simulated the developmental stages of cultivars within each maturity group fairly well. Soybean yields for the grids of 10 km×10 km in Illinois state were simulated from 2,000 to 2,011 with weather data under 18 simulation conditions including the combinations of three maturity groups, three seeding dates and two irrigation regimes. Planting dates and maturity groups were assigned differently to the three sub-regions divided longitudinally. The yearly state yields that were estimated by averaging all the grid yields simulated under non-irrigated and fully-Irrigated conditions showed a big difference from the statistical yields and did not explain the annual trend of yield increase due to the improved cultivation technologies. Using the grain yield data of 9 agricultural districts in Illinois observed and estimated from the simulated grid yield under 18 simulation conditions, a multiple regression model was constructed to estimate soybean yield at agricultural district level. In this model a year variable was also added to reflect the yearly yield trend.
    This model explained the yearly and district yield variation fairly well with a determination coefficients of R2 = 0.61 (n = 108). Yearly state yields which were calculated by weighting the model-estimated yearly average agricultural district yield by the cultivation area of each agricultural district showed very close correspondence (R2 = 0.80) to the yearly statistical state yields. Furthermore, the model predicted state yield fairly well in 2012 in which data were not used for the model construction and severe yield reduction was recorded due to drought.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“대한원격탐사학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 08일 금요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
3:04 오전