• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

조건부 코퓰라를 이용한 포트폴리오 위험 예측에 대한 실증 분석 (A numerical study on portfolio VaR forecasting based on conditional copula)

10 페이지
기타파일
최초등록일 2025.07.12 최종저작일 2011.11
10P 미리보기
조건부 코퓰라를 이용한 포트폴리오 위험 예측에 대한 실증 분석
  • 이 자료를 선택해야 하는 이유
    이 내용은 AI를 통해 자동 생성된 정보로, 참고용으로만 활용해 주세요.
    • 전문성
    • 신뢰성
    • 실용성
    • 유사도 지수
      참고용 안전
    • 📊 금융 위험 관리의 핵심 방법론인 VaR에 대한 심층 분석 제공
    • 🔍 포트폴리오 위험 예측의 다양한 통계적 접근법 비교
    • 💡 실증적 데이터를 통한 실무적 인사이트 제공

    미리보기

    서지정보

    · 발행기관 : 한국데이터정보과학회
    · 수록지 정보 : 한국데이터정보과학회지 / 22권 / 6호 / 1065 ~ 1074페이지
    · 저자명 : 김은정, 이태욱

    초록

    1990년대 중반 이후 금융 분야에서 가장 많은 관심을 받는 연구 주제 중의 하나는 대표적인 위험 측정 방법인 VaR (Value at risk)이다. VaR는 주어진 신뢰수준에서 정상적인 시장조건을 가정할 때 선택한 목표기간 동안 발생할 수 있는 포트폴리오의 최대손실액으로 정의된다. 본 논문에서는 국내 주가지수 자료를 이용한 포트폴리오에 다변량 정규분포를 이용하는 VaR 예측 방법인 단순이동평균법과 지수가중이동평균법을 고려하여 VaR를 예측한 결과와 t 분포 및 조건부 코퓰라 (Copula) 함수를 이용하여 VaR를 예측한 결과를 비교 평가하였다. 자료 분석 결과에 의하면 포트폴리오 구성 종목 간 에 종속성구조와 비정규성이 존재하는 경우에 t 분포와 조건부 코퓰라 방식을 이용하여 VaR 추정의 정확도를 높일 수 있다는 결론을 얻을 수 있었다.

    영어초록

    During several decades, many researchers in the field of finance have studied Value at Risk (VaR) to measure the market risk. VaR indicates the worst loss over a target horizon such that there is a low, pre-specified probability that the actual loss will be larger (Jorion, 2006, p.106). In this paper, we compare conditional copula method with two conventional VaR forecasting methods based on simple moving average and exponentially weighted moving average for measuring the risk of the portfolio, consisting of two domestic stock indices. Through real data analysis, we conclude that the conditional copula method can improve the accuracy of portfolio VaR forecasting in the presence of high kurtosis and strong correlation in the data.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국데이터정보과학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 01일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
11:44 오후