• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

임상에서 발생할 수 있는 문제 상황에서의 성향 점수 가중치 방법에 대한 비교 모의실험 연구 (A simulation study for various propensity score weighting methods in clinical problematic situations)

17 페이지
기타파일
최초등록일 2025.07.11 최종저작일 2023.10
17P 미리보기
임상에서 발생할 수 있는 문제 상황에서의 성향 점수 가중치 방법에 대한 비교 모의실험 연구
  • 이 자료를 선택해야 하는 이유
    이 내용은 AI를 통해 자동 생성된 정보로, 참고용으로만 활용해 주세요.
    • 전문성
    • 논리성
    • 실용성
    • 유사도 지수
      참고용 안전
    • 🔬 임상시험의 성향 점수 가중치 방법에 대한 심층적인 비교 연구 제공
    • 📊 다양한 문제 상황에서의 통계적 접근법 시뮬레이션 분석
    • 🧠 관찰연구의 편향 최소화를 위한 실무적 통찰 제공

    미리보기

    서지정보

    · 발행기관 : 한국통계학회
    · 수록지 정보 : 응용통계연구 / 36권 / 5호 / 381 ~ 397페이지
    · 저자명 : 정시성, 민은정

    초록

    대부분의 임상시험에서 가장 대표적으로 사용되는 실험설계는 무작위화로, 치료 효과를 정확하게 추정하기 위해 이용된다.
    그러나 무작위화가 이루어지지 않은 관찰연구의 경우 치료군과 대조군의 비교로 얻는 치료 효과에는 환자 간의 특성 등 여러 조정되지 않은 차이로 인해 편향이 발생한다.
    성향 점수 가중치는 이러한 문제점을 해결하기 위해 널리쓰이는 방법으로 치료 효과를 추정하는데에 있어 교란요인을 조정하여 편향을 최소화하도록 하는 방법이다.
    성향 점수를 이용한 가중치 방법 중 가장 널리 알려진 역확률 가중치는 관찰된 공변량이 주어졌을 때 특정 치료에 할당될 조건부 확률의 역에 비례하는 가중치를 할당한다.
    그러나 이 방법은 극단적인 성향 점수에 의해 종종 방해 받아 편향된 추정치와 과도한 분산을 초래한다는 점이 알려져있어 이러한 문제를 완화하기 위해 절사 역확률 가중치, 중복 가중치, 일치 가중치를 포함한 여러 가지 대안 방법이 제안되었다.
    본 논문에서는 제한된 중복, 잘못 지정된 성향 점수 모델 및 예측과 반대되는 치료 등 다양한 문제 상황에서 여러 성향 점수 가중치 방법의 성능을 비교하는 시뮬레이션 비교연구를 수행하였다.
    비교연구의 결과 중복 가중치와 일치 가중치는 편향, 제곱근평균제곱오차 및 포함 확률 측면에서 역확률 가중치와 절사 역확률 가중치에 비에 우월한 성능을 보임을 확인하였다.

    영어초록

    The most representative design used in clinical trials is randomization, which is used to accurately estimate the treatment e ect. However, comparison between the treatment group and the control group in an observational study without randomization is biased due to various unadjusted di erences, such as characteristics between patients. Propensity score weighting is a widely used method to address these problems and to minimize bias by adjusting those confounding and assess treatment e ects. Inverse probability weighting, the most popular method, assigns weights that are proportional to the inverse of the conditional probability of receiving a specific treatment assignment, given observed covariates. However, this method is often su ered by extreme propensity scores, resulting in biased estimates and excessive variance. Several alternative methods including trimming, overlap weights, and matching weights have been proposed to mitigate these issues. In this paper, we conduct a simulation study to compare performance of various propensity score weighting methods under diverse situation, such as limited overlap, misspecified propensity score, and treatment contrary to prediction. From the simulation results overlap weights and matching weights consistently outperform inverse probability weighting and trimming in terms of bias, root mean squared error and coverage probability.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“응용통계연구”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 23일 금요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
2:29 오후