• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

이차 미분을 이용한 경험적 모드분해법 (Empirical Mode Decomposition using the Second Derivative)

한국학술지에서 제공하는 국내 최고 수준의 학술 데이터베이스를 통해 다양한 논문과 학술지 정보를 만나보세요.
13 페이지
기타파일
최초등록일 2025.07.05 최종저작일 2013.04
13P 미리보기
이차 미분을 이용한 경험적 모드분해법
  • 미리보기

    서지정보

    · 발행기관 : 한국통계학회
    · 수록지 정보 : 응용통계연구 / 26권 / 2호 / 335 ~ 347페이지
    · 저자명 : 박민수, 김동호, 오희석

    초록

    다양한 분야에서 시그널(signal) 형태로 자료들이 표현된다. 예를 들면 심전도(electrocardiogram)는 심근에서 발생하는 활동 전류를 나타내는데, 심장의 박동에 따라 수축과 이완을 반복하는 과정을 시간에 따른 활동 전류량의 변동으로 나타낸다. 현실세계에서 측정하거나 관찰되는 시그널에는 다양한 형태의 시그널들이 혼합되어 있는 경우가 흔하다. 예를 들어 오케스트라 연주의 아름다운 선율은 고유한 주파수(frequency)를 지닌 악기들의 다양한 소리로 구성되어 있으며, 각기 다른 음조(note)가 하나로 모여 완벽한 하모니를 형성하게 된다. 시그널이 정상인(stationary) 경우에 혼합된 시그널들을 분해하여 분석하는 방법에 대해 현재까지 다양하게 연구되어 왔다. 자료가 비정상(non-stationary)일 경우에는 기존의 방법론들을 적용시키기에는 한계가 있다. 비정상성 자료를 다루기 위해 Huang 등 (1998)은 경험적 모드분해법(empirical mode decomposition)이라는 방법을 제안하였다. 자료에 내포되어 있는 국소적인 파동(oscillation)을 국소 극값들(local extrema)을 식별하여 자료 적응적으로 추출한다.
    경험적 모드분해법은 잡음(error)에 의해 자료가 오염되어 있는 경우에는 국소 극값들을 통하여 국소적인 파동을 추정하기 어려우며,자료의 크기가 커짐에 따라 계산량도 크게 늘어나는 단점 등이 있다.
    본 연구에서는 이차 미분을 이용하여 국소적인 파동을 식별하고 추정하는 새로운 방법론을 제시하고자 한다.

    영어초록

    There are various types of real world signals. For example, an electrocardiogram(ECG) represents myocardium activities (contraction and relaxation) according to the beating of the heart. ECG can be expressed as the fluctuation of ampere ratings over time. A signal is a composite of various types of signals. An orchestra (which boasts a beautiful melody) consists of a variety of instruments with a unique frequency; subsequently, each sound is combined to form a perfect harmony. Various research on how to to decompose mixed stationary signals have been conducted. In the case of non-stationary signals, there is a limitation to use methodologies for stationary signals. Huang et al. (1998) proposed empirical mode decomposition(EMD) to deal with non-stationarity.
    EMD provides a data-driven approach to decompose a signal into intrinsic mode functions according to local oscillation through the identification of local extrema.
    However, due to the repeating process in the construction of envelopes, EMD algorithm is not efficient and not robust to a noise,and its computational complexity tends to increase as the size of a signal grows. In this research, we propose a new method to extract a local oscillation embedded in a signal by utilizing the second derivative.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“응용통계연구”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 09월 04일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
10:10 오후