PARTNER
검증된 파트너 제휴사 자료

SPAN을 이용한 간경변증 발생 위험군 분류 평가 (The Classification of Risk Group for Liver Cirrhosis Using SPAN)

9 페이지
기타파일
최초등록일 2025.07.02 최종저작일 2015.06
9P 미리보기
SPAN을 이용한 간경변증 발생 위험군 분류 평가
  • 미리보기

    서지정보

    · 발행기관 : 한국보건정보통계학회
    · 수록지 정보 : 보건정보통계학회지 / 40권 / 2호 / 13 ~ 21페이지
    · 저자명 : 유영애, 송기준

    초록

    Objectives: The statistical predictive methods have been used to find the risk factors related with diseases and to generate predictive probabilities of those diseases. Logistic regression is the most commonly used method for predicting the probability of diseases in the medical fields. Also, data-driven methods, such as CART have been used to identify subjects at increased risk of diseases. However, both of regression and tree models have their specific limitations in spite of their advantages. Recently, an alternative approach called by search partition analysis (SPAN) is suggested, which is based on direct non-hierarchical search algorithm to identify subgroups at risk. SPAN searches subgroups among different Boolean combinations of risk factors.
    Methods: SPAN was compared against the performance of the other 3 methods; logistic regression, polychotomous regression and quick unbiased efficient statistical trees. We applied these methods to the real clinical data composed of 4,093 individuals who received the screening test in first and then visited Yonsei University Medical Center for check-up liver cirrhosis between May 1994 and September 2005. The performance of SPAN and that of any other methods were compared and the measures of performance were sensitivity, specificity, and accuracy.
    Results: In the results using SPAN, the findings identified by the risk factors for liver cirrhosis were HbsAg, AntiHCV, Family history, platelet and α-FP. And we found that the sensitivity using SPAN were much higher than those of other methods in various data sets.
    Conclusions: In conclusion, as long as it works, the performance of SPAN should make sense in the context of medical diagnosis and prognosis. Also, It was known that SPAN had an advantage that its decision rules are usually more interpretable than those of other methods.
    Keywords: SPAN, Polychotomous regression, QUEST, Classification, Liver cirrhosis

    영어초록

    Objectives: The statistical predictive methods have been used to find the risk factors related with diseases and to generate predictive probabilities of those diseases. Logistic regression is the most commonly used method for predicting the probability of diseases in the medical fields. Also, data-driven methods, such as CART have been used to identify subjects at increased risk of diseases. However, both of regression and tree models have their specific limitations in spite of their advantages. Recently, an alternative approach called by search partition analysis (SPAN) is suggested, which is based on direct non-hierarchical search algorithm to identify subgroups at risk. SPAN searches subgroups among different Boolean combinations of risk factors.
    Methods: SPAN was compared against the performance of the other 3 methods; logistic regression, polychotomous regression and quick unbiased efficient statistical trees. We applied these methods to the real clinical data composed of 4,093 individuals who received the screening test in first and then visited Yonsei University Medical Center for check-up liver cirrhosis between May 1994 and September 2005. The performance of SPAN and that of any other methods were compared and the measures of performance were sensitivity, specificity, and accuracy.
    Results: In the results using SPAN, the findings identified by the risk factors for liver cirrhosis were HbsAg, AntiHCV, Family history, platelet and α-FP. And we found that the sensitivity using SPAN were much higher than those of other methods in various data sets.
    Conclusions: In conclusion, as long as it works, the performance of SPAN should make sense in the context of medical diagnosis and prognosis. Also, It was known that SPAN had an advantage that its decision rules are usually more interpretable than those of other methods.
    Keywords: SPAN, Polychotomous regression, QUEST, Classification, Liver cirrhosis

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“보건정보통계학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 01일 금요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
1:47 오후