• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

초진환자 재방문 예측모형 개발 (Development of a revisit prediction model for the outpatient in a hospital)

9 페이지
기타파일
최초등록일 2025.06.24 최종저작일 2008.06
9P 미리보기
초진환자 재방문 예측모형 개발
  • 미리보기

    서지정보

    · 발행기관 : 대한의료정보학회
    · 수록지 정보 : Healthcare Informatics Research / 14권 / 2호 / 137 ~ 145페이지
    · 저자명 : 황성완, 이해종

    초록

    Objectives: This study is for developing the prediction model of outpatient's revisit in target hospital. Using this model, hospital managers can make efficient customer relationship. Methods: This is based on the medical record data of patients in target hospital (with 967 beds). They are divided into two groups, which are used each for different purpose. One(raw data) is used to make the prediction model of revisit and the other(test data) is used to evaluate the model. For raw data were used the 4,273 outpatient cases, where patients visited the first time between august and september in 2000, and visited till december in 2003. For the test data were used 9,392 outpatient cases, where patients visited the first time between august and september in 2003, and visited till december in 2006. That is, each data was selected from the outpatient's medical records for three-years. Results: The decision tree model is better than the logistic regression model as prediction model of outpatient's revisit in target hospital. The decision tree model is evaluated more excellent in ROC curve and classification accuracy in test data. For predicting the outpatient's revisit, it is more useful to have 4 variables - non-insured expenses, special medical service, cooperation service with oriental medicine and visit via ER. We can predict the revisit of outpatients over 39.5% rate by these variables. Conclusions: By using decision tree model, target hospital can make more accurate prediction of outpatient's revisit and make good customer relation management. So, target hospital can use some CRM program including 4 variables. To make more useful model for other hospitals in Korea, each hospital managers need to understand more their hospital environment and patient's characteristics.

    영어초록

    Objectives: This study is for developing the prediction model of outpatient's revisit in target hospital. Using this model, hospital managers can make efficient customer relationship. Methods: This is based on the medical record data of patients in target hospital (with 967 beds). They are divided into two groups, which are used each for different purpose. One(raw data) is used to make the prediction model of revisit and the other(test data) is used to evaluate the model. For raw data were used the 4,273 outpatient cases, where patients visited the first time between august and september in 2000, and visited till december in 2003. For the test data were used 9,392 outpatient cases, where patients visited the first time between august and september in 2003, and visited till december in 2006. That is, each data was selected from the outpatient's medical records for three-years. Results: The decision tree model is better than the logistic regression model as prediction model of outpatient's revisit in target hospital. The decision tree model is evaluated more excellent in ROC curve and classification accuracy in test data. For predicting the outpatient's revisit, it is more useful to have 4 variables - non-insured expenses, special medical service, cooperation service with oriental medicine and visit via ER. We can predict the revisit of outpatients over 39.5% rate by these variables. Conclusions: By using decision tree model, target hospital can make more accurate prediction of outpatient's revisit and make good customer relation management. So, target hospital can use some CRM program including 4 variables. To make more useful model for other hospitals in Korea, each hospital managers need to understand more their hospital environment and patient's characteristics.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 04일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
4:10 오전