• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

유출유 이동 가시화 및 입자 매칭 알고리즘 (Oil Spill Visualization and Particle Matching Algorithm)

한국학술지에서 제공하는 국내 최고 수준의 학술 데이터베이스를 통해 다양한 논문과 학술지 정보를 만나보세요.
7 페이지
기타파일
최초등록일 2025.06.18 최종저작일 2020.03
7P 미리보기
유출유 이동 가시화 및 입자 매칭 알고리즘
  • 미리보기

    서지정보

    · 발행기관 : 한국융합학회
    · 수록지 정보 : 한국융합학회논문지 / 11권 / 3호 / 53 ~ 59페이지
    · 저자명 : 이현창, 김용혁

    초록

    허베이 스피리트호 기름유출사고와 같은 해양 유류유출사고에서 잘못된 초기대응은 경제 손실뿐만 아니라 생태계에 큰 피해를 입힌다. 하지만 다양한 변수가 존재하는 해양에서 유출유의 움직임을 예측하는 것은 매우 힘든일이다. 이를 해결하기 위해서 뜰개 데이터를 활용해서 바다위의 부유물의 이동을 연구하는 기존 연구인 입자예측을 확장하여 면단위로 예측을 하는 유출유 예측 가시화를 진행하였다. 해양 데이터 포맷인 HDF5에서 특정 위치의 해류, 풍속 데이터를 양선형 보간법을 이용해 추출한 뒤, 수많은 점들의 이동을 입자예측하여 그 결과를 폴리곤 및 히트맵을 이용해 가시화 하였다. 또한 뜰개데이터의 문제점인 데이터 부족과 유출유와 움직임이 다른 점을 해결 하기 위해 유출유로부터 입자 데이터를 얻어낼 수 있는 유출유 입자 매칭 알고리즘을 제안한다. 유출유 입자 매칭 알고리즘은 면단위 유출유의 모습을 입자화 하여 입자의 움직임을 추적하는 알고리즘이다. 주성분 분석을 이용하여 문제를 분할하고, 유출유의 이동거리의 분산이 최소화 되는 지점으로 유전알고리즘을 이용해 매칭하였다. 유출유 가시화 결과 데이터로 검증한 결과 주성분 분석과 유전알고리즘을 이용한 입자매칭 알고리즘이 가장 성능이 뛰어난 것을 확인할 수 있었으며, 평균 데이터 오차는 3.2%로 의미있는 연구임을 확인하였다.

    영어초록

    Initial response is important in marine oil spills, such as the Hebei Spirit oil spill, but it is very difficult to predict the movement of oil out of the ocean, where there are many variables. In order to solve this problem, the forecasting of oil spill has been carried out by expanding the particle prediction, which is an existing study that studies the movement of floats on the sea using the data of the float. In the ocean data format HDF5, the current and wind velocity data at a specific location were extracted using bilinear interpolation, and then the movement of numerous points was predicted by particles and the results were visualized using polygons and heat maps. In addition, we propose a spill oil particle matching algorithm to compensate for the lack of data and the difference between the spilled oil and movement. The spilled oil particle matching algorithm is an algorithm that tracks the movement of particles by granulating the appearance of surface oil spilled oil. The problem was segmented using principal component analysis and matched using genetic algorithm to the point where the variance of travel distance of effluent oil is minimized. As a result of verifying the effluent oil visualization data, it was confirmed that the particle matching algorithm using principal component analysis and genetic algorithm showed the best performance, and the mean data error was 3.2%.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국융합학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 프레시홍 - 추석
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 09월 26일 금요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
7:38 오후