• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

기계학습 기반의 IABP 부이 자료와 AMSR2 위성영상을 이용한 여름철 북극 대기 온도 추정 (The Estimation of Arctic Air Temperature in Summer Based on Machine Learning Approaches Using IABP Buoy and AMSR2 Satellite Data)

12 페이지
기타파일
최초등록일 2025.06.18 최종저작일 2018.12
12P 미리보기
기계학습 기반의 IABP 부이 자료와 AMSR2 위성영상을 이용한 여름철 북극 대기 온도 추정
  • 미리보기

    서지정보

    · 발행기관 : 대한원격탐사학회
    · 수록지 정보 : 대한원격탐사학회지 / 34권 / 6호 / 1261 ~ 1272페이지
    · 저자명 : 한대현, 김영준, 임정호, 이상균, 이연수, 김현철

    초록

    북극 지역의 대기 온도는 바다 및 해빙, 대기 사이의 에너지 교환에 큰 역할을 하므로 북극 대기 온도를 정확하게 파악하는 것은 중요하다. 하지만 현장 관측 자료들은 북극 대기 온도의 공간적인 분포를 나타내는 데에 한계가 있다. 따라서 본 연구에서는 부이(buoy) 자료와 Advanced Microwave Scanning Radiometer 2(AMSR2) 위성자료를 이용하여 기계학습 기반 여름철 대기 온도 추정 모델을 구축하였다. 기계학습으로는 random forest(RF) 및 support vector machine(SVM)을 사용하였으며, AMSR2 관측 시간에 따라 하루 두 번의 대기 온도를 추정하였다. 또한 추정된 대기 온도를 유럽 중기예보센터(European Centre for Medium-Range Weather Forecasts, ECMWF)의 ERA-Interim 재분석자료의 대기 온도와 공간 분포를 비교하였다. 교차 검증 결과 두 가지 기계학습 기법 모두 0.84-0.88의 R2 및 1.31-1.53°C의 RMSE를 보였다. 공간적인 분포에서 IABP 부이 관측 자료가 존재하지 않는 바렌츠해(Barents Sea), 카라해(Kara Sea) 및 배핀만(Baffin bay) 지역에서는 기계학습 모델이 ERA-Interim 대기 온도에 비하여 과소 추정하는 경향을 보였다. 본 연구는 경험적인 북극 대기 온도 추정의 가능성과 한계점을 서술하였다.

    영어초록

    It is important to measure the Arctic surface air temperature because it plays a key-role in the exchange of energy between the ocean, sea ice, and the atmosphere. Although in-situ observations provide accurate measurements of air temperature, they are spatially limited to show the distribution of Arctic surface air temperature. In this study, we proposed machine learning-based models to estimate the Arctic surface air temperature in summer based on buoy data and Advanced Microwave Scanning Radiometer 2 (AMSR2) satellite data. Two machine learning approaches-random forest (RF) and support vector machine (SVM)-were used to estimate the air temperature twice a day according to AMSR2 observation time. Both RF and SVM showed R2 of 0.84-0.88 and RMSE of 1.31-1.53°C. The results were compared to the surface air temperature and spatial distribution of the ERA-Interim reanalysis data from the European Center for Medium-Range Weather Forecasts (ECMWF). They tended to underestimate the Barents Sea, the Kara Sea, and the Baffin Bay region where no IABP buoy observations exist. This study showed both possibility and limitations of the empirical estimation of Arctic surface temperature using AMSR2 data.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“대한원격탐사학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가 요청 쿠폰 이벤트
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 07일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
9:32 오후