PARTNER
검증된 파트너 제휴사 자료

TIGGE 자료를 이용한 2012년 12월 28일 한반도 강설사례 예측성 연구 (Predictability Study of Snowfall Case over South Korea Using TIGGE Data on 28 December 2012)

15 페이지
기타파일
최초등록일 2025.06.17 최종저작일 2014.03
15P 미리보기
TIGGE 자료를 이용한 2012년 12월 28일 한반도 강설사례 예측성 연구
  • 미리보기

    서지정보

    · 발행기관 : 한국기상학회
    · 수록지 정보 : 대기 / 24권 / 1호 / 1 ~ 15페이지
    · 저자명 : 이상민, 한상은, 원혜영, 하종철, 이정순, 심재관, 이용희

    초록

    This study compared ensemble mean and probability forecasts of snow depthamount associated with winter storm over South Korea on 28 December 2012 at five operationalforecast centers (CMA, ECMWF, NCEP, KMA, and UMKO). And cause of differencein predicted snow depth at each Ensemble Prediction System (EPS) was investigated by usingTHe Observing system Research and Predictability EXperiment (THORPEX) InteractiveGrand Global Ensemble (TIGGE) data. This snowfall event occurred due to low pressure passingthrough South Sea of Korea. Amount of 6 hr accumulated snow depth was more than 10cm over southern region of South Korea In this case study, ECMWF showed best predictionskill for the spatio-temporal distribution of snow depth. At first, ECMWF EPS has been consistentlyenhancing the indications present in ensemble mean snow depth forecasts from 7-daylead time. Secondly, its ensemble probabilities in excess of 2~5 cm/6 hour have been coincidedwith observation frequencies. And this snowfall case could be predicted from 5-day leadtime by using 10-day lag ensemble mean 6 hr accumulated snow depth distribution. In addition,the cause of good performances at ECMWF EPS in predicted snow depth amounts wasdue to outstanding prediction ability of forming inversion layer with below 0oC temperature inlow level (below 850 hPa) according to 35oN at 1-day lead time.

    영어초록

    This study compared ensemble mean and probability forecasts of snow depthamount associated with winter storm over South Korea on 28 December 2012 at five operationalforecast centers (CMA, ECMWF, NCEP, KMA, and UMKO). And cause of differencein predicted snow depth at each Ensemble Prediction System (EPS) was investigated by usingTHe Observing system Research and Predictability EXperiment (THORPEX) InteractiveGrand Global Ensemble (TIGGE) data. This snowfall event occurred due to low pressure passingthrough South Sea of Korea. Amount of 6 hr accumulated snow depth was more than 10cm over southern region of South Korea In this case study, ECMWF showed best predictionskill for the spatio-temporal distribution of snow depth. At first, ECMWF EPS has been consistentlyenhancing the indications present in ensemble mean snow depth forecasts from 7-daylead time. Secondly, its ensemble probabilities in excess of 2~5 cm/6 hour have been coincidedwith observation frequencies. And this snowfall case could be predicted from 5-day leadtime by using 10-day lag ensemble mean 6 hr accumulated snow depth distribution. In addition,the cause of good performances at ECMWF EPS in predicted snow depth amounts wasdue to outstanding prediction ability of forming inversion layer with below 0oC temperature inlow level (below 850 hPa) according to 35oN at 1-day lead time.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“대기”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 05일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
4:47 오후