PARTNER
검증된 파트너 제휴사 자료

장기요양 필요 발생의 고위험 대상자 발굴을 위한 예측모형 개발 (Development of prediction model identifying high-risk older persons in need of long-term care)

12 페이지
기타파일
최초등록일 2025.06.06 최종저작일 2022.08
12P 미리보기
장기요양 필요 발생의 고위험 대상자 발굴을 위한 예측모형 개발
  • 미리보기

    서지정보

    · 발행기관 : 한국통계학회
    · 수록지 정보 : 응용통계연구 / 35권 / 4호 / 457 ~ 468페이지
    · 저자명 : Mi Kyung Song, Yeongwoo Park, Eun-Jeong Han

    초록

    고령인구가 증가함에 따라 국가차원에서 노인의 건강노화 실현을 위한 장기요양 필요 발생의 예방 방안을 마련하는 것은 매우 중요하며, 정책적 효과를 극대화하기 위해서는 적절한 대상자의 선정이 선행되어야 한다.
    이에 본 연구는 국민건강보험공단의 국민건강정보를 활용하여, 장기요양 필요를 야기하는 기능장애 발생 가능성이 높은 대상자를 발굴하기 위한 예측모형을 개발하고자 한다.
    본 연구는 연구대상자의 과거 수집된 자료를 활용하는 후향적 연구로, 본 연구의 연구대상자는 만 65세 이상 의료보장등록인구이다(총 7,724,101명).
    예측모형 개발을 위해 고유 방법인 로지스틱 회귀모형, 머신러닝 방법인 의사결정나무와 랜덤포레스트, 딥러닝 방법인 다층퍼셉트론 신경망을 분석하였다.
    체계적 분석절차를 통해 각 분석방법별 모형을 적합하였고, 내적 타당성 및 외적 타당성 평가 결과를 기반으로 최종 예측모형을 랜덤포레스트로 선정하였다.
    랜덤포레스트는 모집단에서의 4.50%밖에 되지 않는 장기요양 필요 대상자의 약 90%를 장기요양 필요 발생 고위험 대상자로 예측할 수 있다.
    본 연구의 예측모형 및 고위험군 기준은 노인의 욕구 중심에서 예방 서비스가 필요한 대상자를 선제적으로 발굴하는데 기여할 것으로 기대된다.

    영어초록

    In aged society, it is important to prevent older people from being disability needing long-term care.
    The purpose of this study is to develop a prediction model to discover high-risk groups who are likely to be beneficiaries of Long-Term Care Insurance.
    This study is a retrospective study using database of National Health Insurance Service (NHIS) collected in the past of the study subjects.
    The study subjects are 7,724,101, the population over 65 years of age registered for medical insurance.
    To develop the prediction model, we used logistic regression, decision tree, random forest, and multi-layer perceptron neural network.
    Finally, random forest was selected as the prediction model based on the performances of models obtained through internal and external validation.
    Random forest could predict about 90% of the older people in need of long-term care using DB without any information from the assessment of eligibility for long-term care.
    The findings might be useful in evidence-based health management for prevention services and can contribute to preemptively discovering those who need preventive services in older people.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“응용통계연구”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 07월 24일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
2:04 오전