• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

토양 내 오염물질 농도 예측을 위한 베이지안 벌점 스플라인 (Bayesian Penalized Splines for Predicting Concentrations of Soil Contaminant)

13 페이지
기타파일
최초등록일 2025.06.04 최종저작일 2022.10
13P 미리보기
토양 내 오염물질 농도 예측을 위한 베이지안 벌점 스플라인
  • 미리보기

    서지정보

    · 발행기관 : 한국자료분석학회
    · 수록지 정보 : Journal of The Korean Data Analysis Society / 24권 / 5호 / 1705 ~ 1717페이지
    · 저자명 : 유택선, 나종현, 김준명, 윤태현, 이정호, 김한석, 권만재, 주용성

    초록

    토양오염의 진단을 위해서는 조사 부지의 토양 내 오염물질의 분포를 정확히 파악할 필요가 있다. 하지만 조사 부지에서 관측이 가능한 모든 지점을 생화학적으로 조사하는 것은 현실적으로 불가능하므로 조사 부지 내 일부 선정된 지점에서 얻은 자료를 바탕으로 공간예측모형을 통해 조사 부지의 토양 내 오염물질 농도를 예측하게 된다. 토양 자료는 자료의 특성상 자료의 크기가 충분히 크지 않은 경우가 종종 발생하고, 이에 따라 공간예측의 정확성이 크게 감소할 수 있다. 따라서 본 연구에서는 이러한 문제를 해결하고자 환경부에서 제공하는 토양측정망 자료를 사전 정보로 활용하여 조사 부지의 토양 내 오염물질 농도를 예측하는 베이지안 벌점 스플라인 모형을 제안한다. 또한, 제안 모형의 성능을 평가하기 위해 RMSE를 비롯한 여러 성능 평가 지표를 이용하여 제안 모형과 여러 비교 모형과의 표본 자료 크기 별 예측 정확성을 비교하였다. 성능 평가 결과, 제안 모형의 성능이 비교 모형들에 비해 유용한 성능을 보임을 확인할 수 있었다. 특히, 표본 자료의 크기가 비교적 작을수록 제안 모형의 성능이 비교 모형들이 비해 더욱 준수한 성능을 보였다. 따라서 조사 부지에 대한 토양 자료가 상대적으로 부족한 토양 조사의 초기 단계에서 토양 내 오염물질의 분포를 파악하고자 할 때 제안 모형의 사용을 제안한다.

    영어초록

    For the diagnosis of soil contamination, it is necessary to accurately understand the distribution of pollutants in the soil of the survey site. However, since it is practically impossible to investigate all observable points in the survey site, the concentration of pollutants in the soil of the survey site is predicted through a spatial prediction model based on data obtained from some selected points in the survey site. However, due to the nature of the soil data, the size of the data is often insufficient, which can greatly reduce the accuracy of spatial prediction. Therefore, in this study, to solve this problem, we propose a Bayesian penalized spline model that predicts the concentration of contaminants in the soil of the survey site by using the soil quality monitoring network data provided by the Ministry of Environment(MOE) in Korea as prior information. In addition, in order to evaluate the performance of the proposed model, RMSE, MAE, MAPE were used to compare the prediction accuracy by data size with several comparative models. As a result of the performance evaluation, it was confirmed that the performance of the proposed model showed better performance than the comparative models. In particular, the smaller the data size, the better the performance of the proposed model compared to the comparative models. Therefore, the use of the proposed model can be considered when trying to understand the distribution of pollutants in the soil at the initial stage of soil survey, where soil data for the survey site is relatively scarce.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“Journal of The Korean Data Analysis Society”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 15일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
1:55 오전