• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

베이지안 고차원 선형 회귀분석에서의 비교연구 (A comparison study of Bayesian high-dimensional linear regression models)

15 페이지
기타파일
최초등록일 2025.06.04 최종저작일 2021.06
15P 미리보기
베이지안 고차원 선형 회귀분석에서의 비교연구
  • 미리보기

    서지정보

    · 발행기관 : 한국통계학회
    · 수록지 정보 : 응용통계연구 / 34권 / 3호 / 491 ~ 505페이지
    · 저자명 : 신주원, 이경재

    초록

    본 연구에서는, 고차원상황(p n)에서의 회귀분석 모형을 고려하여 다양한 베이지안 회귀분석 방법들을 비교하였다.
    Spike and slab 사전분포는 고차원 베이지안 회귀분석에서 가장 많이 사용되는 사전분포 중 하나이지만, 탐험해야 하는 모형 공간이 너무 크기 때문에 유한 표본에서 좋지 않은 성능을 보일 수 있다는 문제가 있다. 이에 대한 대안으로, horseshoe 사전분포를 비롯한 다양한 연속 수축사전분포들이 제안되어 사용되고 있다. 비록 위 사전분포들 각각에 대해서는 많은 연구들이 진행되고 있지만, 이들에 대한 포괄적인 비교연구는 매우 드물게 진행되고 있다. 따라서 본 연구에서는, spike and slab 사전분포와 다양한 연속수축사전분포들을 다양한 상황에서 비교하는 연구를 진행 하였다. 각 방법의 성능은 회귀계수 추정 측면과 변수선택 측면을 나누어 비교하였다. 최종적으로, 본 연구에서 진행된 시뮬레이션 연구에 기반하여, 사용시 몇 가지 주의점과 제안들을 제시하였다.

    영어초록

    We consider linear regression models in high-dimensional settings (p n) and compare various classes of priors.
    The spike and slab prior is one of the most widely used priors for Bayesian regression models, but its model space is vast, resulting in a bad performance in finite samples. As an alternative, various continuous shrinkage priors, including the horseshoe prior and its variants, have been proposed. Although each of the above priors has been investigated separately, exhaustive comparative studies of their performance have been conducted very rarely. In this study, we compare the spike and slab prior, the horseshoe prior and its variants in various simulation settings. The performance of each method is demonstrated in terms of the regression coefficient estimation and variable selection. Finally, some remarks and suggestions are given based on comprehensive simulation studies.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“응용통계연구”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 30일 금요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
6:47 오후