• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

준 실시간 뉴스 이슈 분석을 위한 계층적·점증적 군집화 (Hierarchical and Incremental Clustering for Semi Real-time Issue Analysis on News Articles)

23 페이지
기타파일
최초등록일 2025.06.01 최종저작일 2020.06
23P 미리보기
준 실시간 뉴스 이슈 분석을 위한 계층적·점증적 군집화
  • 미리보기

    서지정보

    · 발행기관 : 한국콘텐츠학회
    · 수록지 정보 : 한국콘텐츠학회 논문지 / 20권 / 6호 / 556 ~ 578페이지
    · 저자명 : 김호용, 이승우, 장홍준, 서동민

    초록

    실시간으로 발생하는 뉴스 기사로부터 이슈를 분석하기 위한 다양한 연구가 진행되어 왔다. 하지만 범주에 따라 계층적으로 이슈를 분석하는 연구는 많이 진행되지 않았고, 계층적 이슈 분석을 위한 기존의 연구에서 제안하는 방식 또한 뉴스 기사 증가에 따라 군집화 속도가 느려지는 문제점이 있다. 따라서 본 논문에서는 준 실시간으로 뉴스 기사의 이슈를 분석하는 계층적·점증적 군집화 방식을 제안한다. 제안하는 군집화 방식은 샴 신경망을 이용한 가중 코사인 유사도 측정 모델 기반의 k-평균 알고리즘을 이용한 단어 군집 기반 문서 표현 방식을 통해 뉴스 기사를 문서 벡터로 표현한다. 그리고 문서 벡터로부터 초기 이슈 군집 트리를 생성하고, 새로 발생한 뉴스 기사를 해당 이슈 군집 트리에 추가하는 점증적 군집화 방식을 제안함으로써 뉴스 기사의 계층적 이슈를 준 실시간으로 분석한다. 마지막으로, 본 논문에서 제안하는 방식과 기존 방식들과의 성능 평가를 통해 제안하는 군집화 방식이 정확도 측면에서 기존 방식 대비 NMI 지표 기준 0.26 정도 성능이 향상되었고, 속도 측면에서 약 10배 이상의 성능이 향상됨을 입증하였다.

    영어초록

    There are many different researches about how to analyze issues based on real-time news streams. But, there are few researches which analyze issues hierarchically from news articles and even a previous research of hierarchical issue analysis make clustering speed slower as the increment of news articles. In this paper, we propose a hierarchical and incremental clustering for semi real-time issue analysis on news articles. We trained siamese neural network based weighted cosine similarity model, applied this model to k-means algorithm which is used to make word clusters and converted news articles to document vectors by using these word clusters. Finally, we initialized an issue cluster tree from document vectors, updated this tree whenever news articles happen, and analyzed issues in semi real-time. Through the experiment and evaluation, we showed that up to about 0.26 performance has been improved in terms of NMI. Also, in terms of speed of incremental clustering, we also showed about 10 times faster than before.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국콘텐츠학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가 요청 쿠폰 이벤트
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 03일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
8:56 오전