PARTNER
검증된 파트너 제휴사 자료

다수 가전기기 유효전력의 스팩토그램 분석 및 LSTM기반의 전력 분해 알고리즘 (Spectogram analysis of active power of appliances and LSTM-based Energy Disaggregation)

8 페이지
기타파일
최초등록일 2025.05.29 최종저작일 2021.02
8P 미리보기
다수 가전기기 유효전력의 스팩토그램 분석 및 LSTM기반의 전력 분해 알고리즘
  • 미리보기

    서지정보

    · 발행기관 : 한국융합학회
    · 수록지 정보 : 한국융합학회논문지 / 12권 / 2호 / 21 ~ 28페이지
    · 저자명 : 김임규, 김현철, 김승윤, 신상용

    초록

    본 연구에서는 가전기기 5종에 대해 실제 측정 전력 데이터를 이용하여 딥러닝 기반의 NILM 기법을 제안하고 그 효용성을 검증 하고자 한다. 약 3주간 중앙 전력 측정 장치 및 5종 가전기기(냉장고, 인덕션, TV, 세탁기, 공기청정기)의 유효전력을 개별 측정하였다. 실측 데이터의 전처리 방법을 소개하고 Spectogram 분석을 통해 가전 기기별 특징을 분석하였다. 가전기기별 특징을 학습 데이터셋으로 구성하였다. 중앙 전력 측정 기기와 가전기기 5종에서 측정된 모든 전력 데이터를 시계열 매핑하여 시계열 데이터 분석에 우수한 RNN 계열의 LSTM 신경망을 이용해 학습을 수행하였다. 메인 중앙 전력 측정 장치의 전력 데이터만으로도 5종 전력 신호를 분해해낼 수 있는 알고리즘을 제안하였다.

    영어초록

    In this study, we propose a deep learning-based NILM technique using actual measured power data for 5 kinds of home appliances and verify its effectiveness. For about 3 weeks, the active power of the central power measuring device and five kinds of home appliances (refrigerator, induction, TV, washing machine, air cleaner) was individually measured. The preprocessing method of the measured data was introduced, and characteristics of each household appliance were analyzed through spectogram analysis. The characteristics of each household appliance are organized into a learning data set. All the power data measured by the central power measuring device and 5 kinds of home appliances were time-series mapping, and training was performed using a LSTM neural network, which is excellent for time series data prediction. An algorithm that can disaggregate five types of energies using only the power data of the main central power measuring device is proposed.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국융합학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 04일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
10:43 오후