PARTNER
검증된 파트너 제휴사 자료

머신러닝을 이용한 미숙아의 재원일수 예측 융복합 연구 (Convergence study to predict length of stay in premature infants using machine learning)

12 페이지
기타파일
최초등록일 2025.05.28 최종저작일 2021.07
12P 미리보기
머신러닝을 이용한 미숙아의 재원일수 예측 융복합 연구
  • 미리보기

    서지정보

    · 발행기관 : 한국디지털정책학회
    · 수록지 정보 : 디지털융복합연구 / 19권 / 7호 / 271 ~ 282페이지
    · 저자명 : 김촉환, 강성홍

    초록

    본 연구는 미숙아의 재원일수 예측 모형을 머신러닝 기법을 통해 개발하기 위해 수행 되었다. 모형 개발을 위해 질병관리본부에서 수집한 퇴원손상심층조사 자료의 2011년부터 2016년까지 퇴원한 미숙아 6,149건을 이용하였다. 입원 초기 신경망 모형은 설명력(R²)이 0.75로 다른 모형에 비해 우수 하였다. 입원 초기 변수에 임상진단을 CCS(Clinical class ification software)로 변환하여 추가 투입한 모형은 큐비스트(Cubist) 모형의 설명력(R²)이 0.81로 랜덤 포레스트(Random Forests), 그라디언트 부스트(Gradient boost), 신경망(neural network), 벌점화 회귀(Penalty regression) 모형에 비해 성능이 우수 하였다. 본 연구는 전국단위 데이터를 이용한 미숙아의 재원일수 예측 모형을 머신러닝을 통해 제시하고 그 활용 가능성을 확인하였다. 하지만 임상정보, 부모정보 등 데이터의 한계로 향후 성능 향상을 위한 추가 연구가 필요하다.

    영어초록

    This study was conducted to develop a model for predicting the length of stay for premature infants through machine learning. For the development of this model, 6,149 cases of premature infants discharged from the hospital from 2011 to 2016 of the discharge injury in-depth survey data collected by the Korea Centers for Disease Control and Prevention were used. The neural network model of the initial hospitalization was superior to other models with an explanatory power (R²) of 0.75. In the model added by converting the clinical diagnosis to CCS(Clinical class ification software), the explanatory power (R²) of the cubist model was 0.81, which was superior to the random forest, gradient boost, neural network, and penalty regression models. In this study, using national data, a model for predicting the length of stay for premature infants was presented through machine learning and its applicability was confirmed. However, due to the lack of clinical information and parental information, additional research is needed to improve future performance.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“디지털융복합연구”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 02일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
10:33 오전