• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

다층퍼셉트론의 계층적 구조를 통한 성능향상 (Hierarchical Architecture of Multilayer Perceptrons for Performance Improvement)

9 페이지
기타파일
최초등록일 2025.05.25 최종저작일 2010.06
9P 미리보기
다층퍼셉트론의 계층적 구조를 통한 성능향상
  • 미리보기

    서지정보

    · 발행기관 : 한국콘텐츠학회
    · 수록지 정보 : 한국콘텐츠학회 논문지 / 10권 / 6호 / 166 ~ 174페이지
    · 저자명 : 오상훈

    초록

    다층퍼셉트론이 충분한 중간층 노드 수를 지니면 임의의 함수를 근사시킬 수 있다는 이론적 연구결과에 기초하여, 다층퍼셉트론을 실제 문제에 응용하는 경우에 일반적으로 입력층, 중간층, 출력층으로 이루어진 3층 구조의 다층퍼셉트론을 사용한다. 그렇지만, 이러한 구조의 다층퍼셉트론은 입력벡터가 여러 가지 성질로 이루어진 복잡한 문제의 경우 좋은 일반화 성능을 보이지 않는다. 이 논문에서는 입력 벡터가 여러 가지 정보를 지닌 데이터들로 구성되어 있는 문제인 경우에 계층적 구조를 지닌 다층퍼셉트론의 구성으로 성능을 향상시키는 방법을 제안한다. 즉, 입력데이터를 섭-벡터로 구분한 후 섭-벡터별로 다층퍼셉트론을 적용시키며, 이 섭-벡터별로 적용된 하위층 다층퍼셉트론으로부터 인식 결과를 받아서 최종 결정을 하는 상위 다층퍼셉트론을 구현한다. 제안한 방법의 효용성은 단백질의 구조를 예측하는 문제를 통하여 확인한다.

    영어초록

    Based on the theoretical results that multi-layer feedforward neural networks with enough hidden nodes are universal approximators, we usually use three-layer MLP's(multi-layer perceptrons) consisted of input, hidden, and output layers for many application problems. However, this conventional three-layer architecture of MLP shows poor generalization performance in some applications, which are complex with various features in an input vector. For the performance improvement, this paper proposes a hierarchical architecture of MLP especially when each part of inputs has a special information. That is, one input vector is divided into sub-vectors and each sub-vector is presented to a separate MLP. These lower-level MLPs are connected to a higher-level MLP, which has a role to do a final decision. The proposed method is verified through the simulation of protein disorder prediction problem.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국콘텐츠학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 09월 09일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
5:40 오전