• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

패치 외삽을 이용한 효과적인 예제기반 영상 인페인팅 (Effective Exemplar-Based Image Inpainting Using Patch Extrapolation)

9 페이지
기타파일
최초등록일 2025.05.20 최종저작일 2014.02
9P 미리보기
패치 외삽을 이용한 효과적인 예제기반 영상 인페인팅
  • 미리보기

    서지정보

    · 발행기관 : 한국콘텐츠학회
    · 수록지 정보 : 한국콘텐츠학회 논문지 / 14권 / 2호 / 1 ~ 9페이지
    · 저자명 : 김진주, 이시웅

    초록

    영상 인페인팅(image inpainting)은 영상에서 훼손된 부분을 복원하거나 영상 내의 불필요한 문자나 특정 물체를 제거한 후 삭제된 영역을 자연스럽게 채우기 위해 널리 사용되는 기법이다. 예제기반 인페인팅은 비어있는 영역에서 어떤 부분부터 채울 것인지를 결정하는 패치 우선순위 결정과 결정된 패치를 어떤 패치로 채울 것인지 결정하는 패치탐색의 두 부분으로 구성되어 있다. 기존 예제기반 인페인팅에서는 패치 내의 알고 있는 영역의 화소 값만을 이용하여 유사패치를 탐색한다. 이는 패치의 일부분만 이용하여 비교하게 되므로 비교 대상이 아닌 영역에 상관성이 없는 화소 값을 갖는 패치가 선택될 수 있다. 이를 개선하기 위해 본 논문에서는 패치외삽을 이용한 예제기반 인페인팅 방식을 제안한다. 제안 방식은 우선순위가 결정된 패치에 대해 패치 내 이미 알고 있는 영역의 화소 값을 이용하여 패치 내 비어있는 영역의 화소 값을 외삽 방식으로 예측치를 구하여 채운 후 유사 패치를 탐색한다. 실험 결과를 통해 제안방식이 기존 예제기반 인페인팅 방식에 비해 자연스러운 결과 영상을 얻을 수 있음을 보여준다.

    영어초록

    Image inpainting is the widely used technique to restore a damaged region or to fill a hole in an image. The exemplar-based technique effectively generates new texture by copying colour values of the most correlated patch in the source into the empty region of the current patch. In traditional exemplar-based synthesis, the patch correlation is computed using only the already filled pixels of the current patch. Thus, by ignoring the correlation between the hole regions of the two patches, an undesirable patch which is highly correlated with the current patch in the already filled area but considerably dissimilar in the area to be filled can be selected, which results in bad texture propagation. To avoid such problems, a new exemplar-based inpainting method using patch extrapolation is proposed. The empty part of the current patch is extrapolated beforehand, and then the complete patch is used for finding its exemplar. Experimental results show that the proposed method provides more natural synthesis results than the conventional ones.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국콘텐츠학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 02일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
12:34 오후