• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

빅데이터 환경에서 다중 슬롯머신 문제에 대한 톰슨 샘플링 방법 (Thompson sampling for multi-armed bandits in big data environments)

11 페이지
기타파일
최초등록일 2025.05.17 최종저작일 2024.10
11P 미리보기
빅데이터 환경에서 다중 슬롯머신 문제에 대한 톰슨 샘플링 방법
  • 미리보기

    서지정보

    · 발행기관 : 한국통계학회
    · 수록지 정보 : 응용통계연구 / 37권 / 5호 / 663 ~ 673페이지
    · 저자명 : Kim Min Kyong, Hwang Beom Seuk

    초록

    MAB (multi-armed bandits) 문제는 순차적 의사 결정 상황에서 나타나며, 동적인 환경 내에서 가능한 여러 행동 중 보상을 최대화할 수 있는 최적의 행동을 선택하는 데 중점을 둔다.
    통계적 학습 이론의 맥락에서 MAB 문제를 해결하는 대표적인 알고리즘 중 하나인 톰슨 샘플링은 근사 기법을 적용하면 복잡한 상황에서도 유연하게 적용될 수 있다고 알려져 있다. 그러나 실제 상용 서비스 데이터를 이용한 연구는 부족한 상황이다. 본 연구에서는 대중적인 추천 시스템 환경 중 하나인 배너 클릭 데이터를 활용하여 여러 조건의 모의실험 환경에서 톰슨 샘플링에 다양한 근사 기법 적용 여부에 따른 성능을 평가하였다. 실험 결과, 랑주뱅 몬테 카를로 근사 기법을 적용한 톰슨 샘플링의 성능이 빅데이터 환경에서 기존 톰슨 샘플링과 유사한 성능을 보임을 확인하였다. 본 연구는 근사 기법을 적용한 톰슨 샘플링이 근사 기법의 고유한 장점을 가지면서도 기존 모형과 유사한 성능을 낼 수 있음을 실증 확인하였다는 점에 그 의의가 있다고 볼 수 있다.

    영어초록

    The multi-armed bandits (MAB) problem, involves selecting actions to maximize rewards within dynamic environments. This study explores the application of Thompson sampling, a robust MAB algorithm, within the context of big data analytics and statistical learning theory. By leveraging large-scale banner click data from recommendation systems, we evaluate Thompson sampling's performance across various simulated scenarios, employing advanced approximation techniques. Our findings demonstrate that Thompson sampling, particularly with Langevin Monte Carlo approximation, maintains robust performance and scalability in big data environments. This underscores its practical significance and adaptability, aligning with contemporary challenges in statistical learning.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“응용통계연구”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 04일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
11:40 오전