PARTNER
검증된 파트너 제휴사 자료

불균형의 대용량 범주형 자료에 대한 분할-과대추출 정복 서포트 벡터 머신 (A divide-oversampling and conquer algorithm based support vector machine for massive and highly imbalanced data)

12 페이지
기타파일
최초등록일 2025.05.15 최종저작일 2022.04
12P 미리보기
불균형의 대용량 범주형 자료에 대한 분할-과대추출 정복 서포트 벡터 머신
  • 미리보기

    서지정보

    · 발행기관 : 한국통계학회
    · 수록지 정보 : 응용통계연구 / 35권 / 2호 / 177 ~ 188페이지
    · 저자명 : 방성완, 김재오

    초록

    일반적으로 support vector machine (SVM)은 높은 수준의 분류 정확도를 제공함으로써 다양한 분야의 분류분석에서 널리 사용되고 있다. 그러나 SVM은 최적화 계산식이 이차계획법(quadratic programming)으로 공식화되어 많은 계산 비용이 필요하므로 대용량 자료의 분류분석에는 그 사용이 제한된다. 또한 불균형 자료(imbalanced data)의 분류분석에서는 다수집단에 편향된 분류함수를 추정함으로써 대부분의 자료를 다수집단으로 분류하여 소수집단의 분류 정확도를 현저히 감소시키게 된다. 이러한 문제점들을 해결하기 위하여 본 논문에서는 다수집단을 분할(divide)하고, 소수집단을 과대추출(oversampling)하여 여러 분류함수들을 추정하고 이들을 통합(conquer)하는 DOC-SVM 분류기법을 제안한다. 제안한 DOC-SVM은 분할정복 알고리즘을 다수집단에 적용하여 SVM의 계산 효율을 향상시키고, 과대추출 알고리즘을 소수집단에 적용하여 SVM 분류함수의 편향을 줄이게 된다. 본 논문에서는 모의실험과 실제자료 분석을 통해 제안한 DOC-SVM의 효율적인 성능과 활용 가능성을 확인하였다.

    영어초록

    The support vector machine (SVM) has been successfully applied to various classification areas with a high level of classification accuracy. However, it is infeasible to use the SVM in analyzing massive data because of its significant computational problems. When analyzing imbalanced data with different class sizes, furthermore, the classification accuracy of SVM in minority class may drop significantly because its classifier could be biased toward the majority class. To overcome such a problem, we propose the DOC-SVM method, which uses divide-oversampling and conquers techniques. The proposed DOC-SVM divides the majority class into a few subsets and applies an oversampling technique to the minority class in order to produce the balanced subsets. And then the DOC-SVM obtains the final classifier by aggregating all SVM classifiers obtained from the balanced subsets. Simulation studies are presented to demonstrate the satisfactory performance of the proposed method.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“응용통계연구”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 02일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
10:29 오후