• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

데이터 불균형 개선에 따른 탁도 예측 앙상블 머신러닝 모형의 성능 특성 (Performance Characteristics of an Ensemble Machine Learning Model for Turbidity Prediction With Improved Data Imbalance)

9 페이지
기타파일
최초등록일 2025.05.15 최종저작일 2023.12
9P 미리보기
데이터 불균형 개선에 따른 탁도 예측 앙상블 머신러닝 모형의 성능 특성
  • 미리보기

    서지정보

    · 발행기관 : 응용생태공학회
    · 수록지 정보 : Ecology and Resilient Infrastructure / 10권 / 4호 / 107 ~ 115페이지
    · 저자명 : 양현석, 박정수

    초록

    고 탁도의 원수는 정수장 운영 및 수 생태 환경에 부정적인 영향을 줄 수 있어 관리가 필요한 수질 인자이며, 하천의탁도 예측을 통해 고 탁도의 원수의 효율적 관리를 수행하기 위해 관련분야에 대한 연구가 지속되고 있다. 본 연구에서는 대표적인앙상블 머신러닝 알고리즘 중 하나인 LightGBM (light gradient boosting machine)을 이용하여 탁도를 예측하는 다중 분류 모형을구축하였다. 모형의 구축을 위해 입력자료를 탁도값에 따라 탁도가 낮은 경우부터 높은 경우까지 4개의 class로 구분하였으며, class 1 - 4에 속하는 자료수는 각각 945개, 763개, 95개, 25개로 분류되었다. 구축한 모형의 class 1 - 4에 대한 정밀도 (Precision) 각각 0.85, 0.71, 0.26, 0.30 재현율 (Recall)은 각각 0.82, 0.76, 0.19, 0.60로 데이터 수가 적은 소수 class에서 상대적으로모형이 성능이 낮은 경향을 보였다. 데이터 불균형을 해소하기 위해 over-sampling알고리즘 중 SMOTE를 적용한 결과 개선된모형의 class 1 - 4에 대한 정밀도 및 재현율은 각각 0.88, 0.71, 0.26, 0.25 및 0.79, 0.76, 0.38, 0.60으로 데이터 불균형 해소를통해 모형의 재현율이 크게 개선되는 것을 확인할 수 있었다. 또한 데이터 구성비율이 모형성능에 미치는 영향에 대한 확인을 위하여 입력자료의 구성비를 다양하게 하고 각각의 자료로 구축된 모형의 결과를 비교하여 입력자료 구성비에 따른 모형성능의차이를 분석하였으며, 모형 입력자료의 구성비의 적정한 산정을 통해 모형의 성능을 향상시킬 수 있음을 확인하였다.

    영어초록

    High turbidity in source water can have adverse effects on water treatment plant operations and aquatic ecosystems, necessitating turbidity management. Consequently, research aimed at predicting river turbidity continues. This study developed a multi-class classification model for prediction of turbidity using LightGBM (Light Gradient Boosting Machine), a representative ensemble machine learning algorithm. The model utilized data that was classified into four classes ranging from 1 to 4 based on turbidity, from low to high. The number of input data points used for analysis varied among classes, with 945, 763, 95, and 25 data points for classes 1 to 4, respectively. The developed model exhibited precisions of 0.85, 0.71, 0.26, and 0.30, as well as recalls of 0.82, 0.76, 0.19, and 0.60 for classes 1 to 4, respectively. The model tended to perform less effectively in the minority classes due to the limited data available for these classes. To address data imbalance, the SMOTE (Synthetic Minority Over-sampling Technique) algorithm was applied, resulting in improved model performance. For classes 1 to 4, the Precision and Recall of the improved model were 0.88, 0.71, 0.26, 0.25 and 0.79, 0.76, 0.38, 0.60, respectively.
    This demonstrated that alleviating data imbalance led to a significant enhancement in Recall of the model. Furthermore, to analyze the impact of differences in input data composition addressing the input data imbalance, input data was constructed with various ratios for each class, and the model performances were compared. The results indicate that an appropriate composition ratio for model input data improves the performance of the machine learning model.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“Ecology and Resilient Infrastructure”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 04일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
10:19 오후