• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

딥러닝 기반의 영상분할을 이용한 토지피복분류 (Land Cover Classification Using Sematic Image Segmentation with Deep Learning)

10 페이지
기타파일
최초등록일 2025.05.13 최종저작일 2019.04
10P 미리보기
딥러닝 기반의 영상분할을 이용한 토지피복분류
  • 미리보기

    서지정보

    · 발행기관 : 대한원격탐사학회
    · 수록지 정보 : 대한원격탐사학회지 / 35권 / 2호 / 279 ~ 288페이지
    · 저자명 : 이성혁, 김진수

    초록

    본 연구에서는 항공정사영상을 이용하여 SegNet 기반의 의미분할을 수행하고, 토지피복분류에서의그 성능을 평가하였다. 의미분할을 위한 분류 항목을 4가지(시가화건조지역, 농지, 산림, 수역)로 선정하였고, 항공정사영상과 세분류 토지피복도를 이용하여 총 2,000개의 데이터셋을 8:2 비율로 훈련(1,600개) 및 검증(400개)로 구분하여 구축하였다. 구축된 데이터셋은 훈련과 검증으로 나누어 학습하였고, 모델 학습 시 정확도에 영향을 미치는 하이퍼파라미터의 변화에 따른 검증 정확도를 평가하였다. SegNet 모델 검증 결과 반복횟수100,000회, batch size 5에서 가장 높은 성능을 보였다. 이상과 같이 훈련된 SegNet 모델을 이용하여 테스트 데이터셋 200개에 대한 의미분할을 수행한 결과, 항목별 정확도는 농지(87.89%), 산림(87.18%), 수역(83.66%), 시가화건조지역(82.67%), 전체 분류정확도는 85.48%로 나타났다. 이 결과는 기존의 항공영상을 활용한 토지피복분류연구보다 향상된 정확도를 나타냈으며, 딥러닝 기반 의미분할 기법의 적용 가능성이 충분하다고 판단된다. 향후 다양한 채널의 자료와 지수의 활용과 함께 분류 정확도 향상에 크게 기여할 수 있을 것으로 기대된다.

    영어초록

    We evaluated the land cover classification performance of SegNet, which features semantic segmentation of aerial imagery. We selected four semantic classes, i.e., urban, farmland, forest, and water areas, and created 2,000 datasets using aerial images and land cover maps. The datasets were divided at a 8:2 ratio into training (1,600) and validation datasets (400); we evaluated validation accuracy after tuning the hyperparameters. SegNet performance was optimal at a batch size of five with 100,000 iterations. When 200 test datasets were subjected to semantic segmentation using the trained SegNet model, the accuracies were farmland 87.89, forest 87.18, water 83.66, and urban regions 85.48%; the overall accuracy was 85.48%. Thus, deep learning-based semantic segmentation can be used to classify land cover.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“대한원격탐사학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 05일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
8:40 오후